32,367 research outputs found

    CAST – City analysis simulation tool: an integrated model of land use, population, transport and economics

    Get PDF
    The paper reports on research into city modelling based on principles of Science of Complexity. It focuses on integration of major processes in cities, such as economics, land use, transport and population movement. This is achieved using an extended Cellular Automata model, which allows cells to form networks, and operate on individual financial budgets. There are 22 cell types with individual processes in them. The formation of networks is based on supply and demand mechanisms for products, skills, accommodation, and services. Demand for transport is obtained as an emergent property of the system resulting from the network connectivity and relevant economic mechanisms. Population movement is a consequence of mechanisms in the housing and skill markets. Income and expenditure of cells are self-regulated through market mechanisms and changing patterns of land use are a consequence of collective interaction of all mechanisms in the model, which are integrated through emergence

    Key challenges in agent-based modelling for geo-spatial simulation

    Get PDF
    Agent-based modelling (ABM) is fast becoming the dominant paradigm in social simulation due primarily to a worldview that suggests that complex systems emerge from the bottom-up, are highly decentralised, and are composed of a multitude of heterogeneous objects called agents. These agents act with some purpose and their interaction, usually through time and space, generates emergent order, often at higher levels than those at which such agents operate. ABM however raises as many challenges as it seeks to resolve. It is the purpose of this paper to catalogue these challenges and to illustrate them using three somewhat different agent-based models applied to city systems. The seven challenges we pose involve: the purpose for which the model is built, the extent to which the model is rooted in independent theory, the extent to which the model can be replicated, the ways the model might be verified, calibrated and validated, the way model dynamics are represented in terms of agent interactions, the extent to which the model is operational, and the way the model can be communicated and shared with others. Once catalogued, we then illustrate these challenges with a pedestrian model for emergency evacuation in central London, a hypothetical model of residential segregation tuned to London data which elaborates the standard Schelling (1971) model, and an agent-based residential location built according to spatial interactions principles, calibrated to trip data for Greater London. The ambiguities posed by this new style of modelling are drawn out as conclusions

    The EnTrak system : supporting energy action planning via the Internet

    Get PDF
    Recent energy policy is designed to foster better energy efficiency and assist with the deployment of clean energy systems, especially those derived from renewable energy sources. To attain the envisaged targets will require action at all levels and effective collaboration between disparate groups (e.g. policy makers, developers, local authorities, energy managers, building designers, consumers etc) impacting on energy and environment. To support such actions and collaborations, an Internet-enabled energy information system called 'EnTrak' was developed. The aim was to provide decision-makers with information on energy demands, supplies and impacts by sector, time, fuel type and so on, in support of energy action plan formulation and enactment. This paper describes the system structure and capabilities of the EnTrak system

    Mapping environmental injustices: pitfalls and potential of geographic information systems in assessing environmental health and equity.

    Get PDF
    Geographic Information Systems (GIS) have been used increasingly to map instances of environmental injustice, the disproportionate exposure of certain populations to environmental hazards. Some of the technical and analytic difficulties of mapping environmental injustice are outlined in this article, along with suggestions for using GIS to better assess and predict environmental health and equity. I examine 13 GIS-based environmental equity studies conducted within the past decade and use a study of noxious land use locations in the Bronx, New York, to illustrate and evaluate the differences in two common methods of determining exposure extent and the characteristics of proximate populations. Unresolved issues in mapping environmental equity and health include lack of comprehensive hazards databases; the inadequacy of current exposure indices; the need to develop realistic methodologies for determining the geographic extent of exposure and the characteristics of the affected populations; and the paucity and insufficiency of health assessment data. GIS have great potential to help us understand the spatial relationship between pollution and health. Refinements in exposure indices; the use of dispersion modeling and advanced proximity analysis; the application of neighborhood-scale analysis; and the consideration of other factors such as zoning and planning policies will enable more conclusive findings. The environmental equity studies reviewed in this article found a disproportionate environmental burden based on race and/or income. It is critical now to demonstrate correspondence between environmental burdens and adverse health impacts--to show the disproportionate effects of pollution rather than just the disproportionate distribution of pollution sources

    A Review on the Application of Natural Computing in Environmental Informatics

    Get PDF
    Natural computing offers new opportunities to understand, model and analyze the complexity of the physical and human-created environment. This paper examines the application of natural computing in environmental informatics, by investigating related work in this research field. Various nature-inspired techniques are presented, which have been employed to solve different relevant problems. Advantages and disadvantages of these techniques are discussed, together with analysis of how natural computing is generally used in environmental research.Comment: Proc. of EnviroInfo 201

    Seeing the invisible: from imagined to virtual urban landscapes

    Get PDF
    Urban ecosystems consist of infrastructure features working together to provide services for inhabitants. Infrastructure functions akin to an ecosystem, having dynamic relationships and interdependencies. However, with age, urban infrastructure can deteriorate and stop functioning. Additional pressures on infrastructure include urbanizing populations and a changing climate that exposes vulnerabilities. To manage the urban infrastructure ecosystem in a modernizing world, urban planners need to integrate a coordinated management plan for these co-located and dependent infrastructure features. To implement such a management practice, an improved method for communicating how these infrastructure features interact is needed. This study aims to define urban infrastructure as a system, identify the systematic barriers preventing implementation of a more coordinated management model, and develop a virtual reality tool to provide visualization of the spatial system dynamics of urban infrastructure. Data was collected from a stakeholder workshop that highlighted a lack of appreciation for the system dynamics of urban infrastructure. An urban ecology VR model was created to highlight the interconnectedness of infrastructure features. VR proved to be useful for communicating spatial information to urban stakeholders about the complexities of infrastructure ecology and the interactions between infrastructure features.https://doi.org/10.1016/j.cities.2019.102559Published versio

    3D and 4D Simulations for Landscape Reconstruction and Damage Scenarios. GIS Pilot Applications

    Get PDF
    The project 3D and 4D Simulations for Landscape Reconstruction and Damage Scenarios: GIS Pilot Applications has been devised with the intention to deal with the demand for research, innovation and applicative methodology on the part of the international programme, requiring concrete results to increase the capacity to know, anticipate and respond to a natural disaster. This project therefore sets out to develop an experimental methodology, a wide geodatabase, a connected performant GIS platform and multifunctional scenarios able to profitably relate the added values deriving from different geotechnologies, aimed at a series of crucial steps regarding landscape reconstruction, event simulation, damage evaluation, emergency management, multi-temporal analysis. The Vesuvius area has been chosen for the pilot application owing to such an impressive number of people and buildings subject to volcanic risk that one could speak in terms of a possible national disaster. The steps of the project move around the following core elements: creation of models that reproduce the territorial and anthropic structure of the past periods, and reconstruction of the urbanized area, with temporal distinctions; three-dimensional representation of the Vesuvius area in terms of infrastructuralresidential aspects; GIS simulation of the expected event; first examination of the healthcareepidemiological consequences; educational proposals. This paper represents a proactive contribution which describes the aims of the project, the steps which constitute a set of specific procedures for the methodology which we are experimenting, and some thoughts regarding the geodatabase useful to “package” illustrative elaborations. Since the involvement of the population and adequate hazard preparedness are very important aspects, some educational and communicational considerations are presented in connection with the use of geotechnologies to promote the knowledge of risk

    Urban management revolution: intelligent management systems for ubiquitous cities

    Get PDF
    A successful urban management support system requires an integrated approach. This integration includes bringing together economic, socio-cultural and urban development with a well orchestrated transparent and open decision making mechanism. The paper emphasises the importance of integrated urban management to better tackle the climate change, and to achieve sustainable urban development and sound urban growth management. This paper introduces recent approaches on urban management systems, such as intelligent urban management systems, that are suitable for ubiquitous cities. The paper discusses the essential role of online collaborative decision making in urban and infrastructure planning, development and management, and advocates transparent, fully democratic and participatory mechanisms for an effective urban management system that is particularly suitable for ubiquitous cities. This paper also sheds light on some of the unclear processes of urban management of ubiquitous cities and online collaborative decision making, and reveals the key benefits of integrated and participatory mechanisms in successfully constructing sustainable ubiquitous cities
    corecore