74 research outputs found

    Remote sensing in shallow lake ecology

    Get PDF
    Shallow lakes are an important ecological and socio-economic resource. However, the impact of human pressures, both at the lake and catchment scale, has precipitated a decline in the ecological status of many shallow lakes, both in the UK, and throughout Europe. There is now, as direct consequence, unprecedented interest in the assessment and monitoring of ecological status and trajectory in shallow lakes, not least in response to the European Union Water Framework Directive (2000/60/EC). In this context, the spatially-resolving and panoramic data provided by remote sensing platforms may be of immense value in the construction of effective and efficient strategies for the assessment and monitoring of ecological status in shallow lakes and, moreover, in providing new, spatially-explicit, insights into the function of these ecosystems and how they respond to change. This thesis examined the use of remote sensing data for the assessment of (i) phytoplankton abundance and species composition and (ii) aquatic vegetation distribution and ecophysiological status in shallow lakes with a view to establishing the credence of such an approach and its value in limnological research and monitoring activities. High resolution in-situ and airborne remote sensing data was collected during a 2-year sampling campaign in the shallow lakes of the Norfolk Broads. It was demonstrated that semi-empirical algorithms could be formulated and used to provide accurate and robust estimations of the concentration of chlorophyll-a, even in these optically-complex waters. It was further shown that it was possible to differentiate and quantify the abundance of cyanobacteria using the biomarker pigment C-phycocyanin. The subsequent calibration of the imagery obtained from the airborne reconnaissance missions permitted the construction of diurnal and seasonal regional-scale time-series of phytoplankton dynamics in the Norfolk Broads. This approach was able to deliver unique spatial insights into the migratory behaviour of a potentially-toxic cyanobacterial bloom. It was further shown that remote sensing can be used to map the distribution of aquatic plants in shallow lakes, importantly including the extent of submerged vegetation, which is central to the assessment of ecological status. This research theme was subsequently extended in an exploration of the use of remote sensing for assessing the ecophysiological response of wetland plants to nutrient enrichment. It was shown that remote sensing metrics could be constructed for the quantification of plant vigour. The extrapolation of these techniques enabled spatial heterogeneity in the ecophysiological response of Phragmites australis to lake nutrient enrichment to be characterised and assisted the formulation of a mechanistic explanation for the variation in reedswamp performance in these shallow lakes. It is therefore argued that the spatially synoptic data provided by remote sensing has much to offer the assessment, monitoring and policing of ecological status in shallow lakes and, in particular, for facilitating the development of pan-European scale lake surveillance capabilities for the Water Framework Directive (2000/60/EC). It is also suggested that remote sensing can make a valuable contribution to furthering ecological understanding and, most significantly, in enabling ecosystem processes and functions to be examined at the lake-scale

    Global Monitoring for Security and Stability (GMOSS) - Integrated Scientific and Technological Research Supporting Security Aspects of the European Union

    Get PDF
    This report is a collection of scientific activities and achievements of members of the GMOSS Network of Excellence during the period March 2004 to November 2007. Exceeding the horizon of classical remote-sensing-focused projects, GMOSS is characterized by the integration of political and social aspects of security with the assessment of remote sensing capabilities and end-users support opportunities. The report layout reflects the work breakdown structure of GMOSS and is divided into four parts. Part I Concepts and Integration addresses the political background of European Security Policy and possibilities for Earth Observation technologies for a contribution. Besides it illustrates integration activities just as the GMOSS Gender Action Plan or a description of the GMOSS testcases. Part II of this book presents various Application activities conducted by the network partners. The contributions vary from pipeline sabotage analysis in Iraq to GIS studies about groundwater vulnerability in Gaza Strip, from Population Monitoring in Zimbabwe to Post-Conflict Urban Reconstruction Assessments and many more. Part III focuses on the research and development of image processing methods and Tools. The themes range from SAR interferometry for the measurement of Surface Displacement to Robust Satellite Techniques for monitoring natural hazards like volcanoes and earthquakes. Further subjects are the 3D detection of buildings in VHR imagery or texture analysis techniques on time series of satellite images with variable illumination and many other more. The report closes with Part IV. In the chapter ¿The Way Forward¿ a review on four years of integrated work is done. Challenges and achievements during this period are depicted. It ends with an outlook about a possible way forward for integrated European security research.JRC.G.2-Support to external securit

    Climate Change and Atlantic salmon (Salmo salar): Changes in Flow and Freshwater Habitat in the Burrishoole Catchment

    Get PDF
    Climate change is anticipated to impact the flow regime of riverine systems with resultant consequences for the freshwater habitat of Atlantic salmon (Salmo salar) and the long-term sustainability of their population numbers. The Burrishoole catchment, a relatively small but productive salmon catchment (~90 km2) located on Ireland’s west coast, is used as a case study to investigate this. A series of high resolution climate scenarios were employed to examine potential changes in the climate and hydrology of this catchment. The climate scenarios used represent different combinations of greenhouse gas emission scenarios, driving GCMs and statistical/dynamical downscaling models; in addition, three different rainfall-runoff models (HBV, HYSIM and TOPMODEL) were employed – integrating across both structural and parameter uncertainty. By considering multiple model pathways this study attempts to sample across the uncertainties encountered at each stage in the process of translating prescribed anthropogenic forcings into local scale responses in the catchment system. The hydrological projections were examined in the context of the habitat and flow requirements of Atlantic salmon at key stages in their life-cycle (e.g. spawning, migration). Model projections suggest that the catchment is likely to become warmer, with wetter winters and drier summers occurring. The results of the hydrological modelling suggest that this will be accompanied by an increase in the seasonality of its flow regime - manifest in an increase in low (Q95) summer and high (Q05) winter flows. If realised, these changes are likely to impact salmon through a reduction in the availability of preferred habitat, a loss in connectivity across the catchment system and a disruption to the evolved synchrony between the occurrence of optimal in-stream conditions and the time at which certain life history events occur. Each of these factors is likely to impact the processes of migration, reproduction and recruitment - each of which is critical for the long-term viability of healthy, self-sustaining wild stocks in the catchment. Based on the projected flow data it is likely that the carrying capacity and productivity of the catchment may be reduced. In addition, by affecting those life stages which are already subject to significant mortality losses (e.g. fry emergence, smolt migration), changes in climate may result in population collapse - particularly if successive year-classes are affected. The results of the hydrological modelling highlight the sensitivity of smaller spatey catchments to changes in climate. Given that the Burrishoole system is typical of many catchment systems found along Ireland’s western seaboard, the results highlight a vulnerability to climate change which is present more generally across the region

    IKUWA6. Shared Heritage

    Get PDF
    Celebrating the theme ‘Shared heritage’, IKUWA6 (the 6th International Congress for Underwater Archaeology), was the first such major conference to be held in the Asia-Pacific region, and the first IKUWA meeting hosted outside Europe since the organisation’s inception in Germany in the 1990s. A primary objective of holding IKUWA6 in Australia was to give greater voice to practitioners and emerging researchers across the Asia and Pacific regions who are often not well represented in northern hemisphere scientific gatherings of this scale; and, to focus on the areas of overlap in our mutual heritage, techniques and technology. Drawing together peer-reviewed presentations by delegates from across the world who converged in Fremantle in 2016 to participate, this volume covers a stimulating diversity of themes and niche topics of value to maritime archaeology practitioners, researchers, students, historians and museum professionals across the world
    • …
    corecore