7,337 research outputs found

    Mobile agent routing for query retrieval using genetic algorithm

    Get PDF
    Mobile agents often have a task to collect data from several predefined sites.This should be done in an efficient way by minimizing the elapsed time.Usually these agents only know the list of sites but not the distances between them.This paper proposes a method to minimize a network routing time taken by the mobile agents to collect information from different sites using genetic algorithm (GA).The mobile agents repeat travelling over short routes and avoid longer ones.Mobile agents for query retrieval have used the GA to select the best routes that minimize the query retrieval time.The result shows that the proposed method provides good time minimization in retrieving the query results by the mobile agents based on different GA parameters

    A market-oriented agent-based model for information retrieval

    Get PDF
    International audienceInformation Retrieval in the World Wide Web (Web IR) is essential for a number of activities and it is an active domain of research and development. The main challenges concern the relevance of the results provided to users' queries and the performance regarding respond-time. On the other hand, agent-based market systems prove to be efficient for implementing e-commerce or B2B applications on the internet, thanks to inherent properties such as prominency of interactions, scalability, flexibility, interoperability, etc. Although the use of agents in other application domains is not yet widespread, the integration of mobile agents into market mechanisms bring clear and efficient solutions to Quality of Service issues encountered in most distributed applications and notably in Web IR systems. Mobility allows defining the seller – buyer model of interaction, where agents act on behalf of final users or devices providing re-sources, while the generic Market Place architecture provides an organizational setting for the matching of demands and offers. The paper shows how this framework applies to Web IR and provides experimental validation results from a Jade implementation

    Big data analytics:Computational intelligence techniques and application areas

    Get PDF
    Big Data has significant impact in developing functional smart cities and supporting modern societies. In this paper, we investigate the importance of Big Data in modern life and economy, and discuss challenges arising from Big Data utilization. Different computational intelligence techniques have been considered as tools for Big Data analytics. We also explore the powerful combination of Big Data and Computational Intelligence (CI) and identify a number of areas, where novel applications in real world smart city problems can be developed by utilizing these powerful tools and techniques. We present a case study for intelligent transportation in the context of a smart city, and a novel data modelling methodology based on a biologically inspired universal generative modelling approach called Hierarchical Spatial-Temporal State Machine (HSTSM). We further discuss various implications of policy, protection, valuation and commercialization related to Big Data, its applications and deployment

    DNAgents: Genetically Engineered Intelligent Mobile Agents

    Get PDF
    Mobile agents are a useful paradigm for network coding providing many advantages and disadvantages. Unfortunately, widespread adoption of mobile agents has been hampered by the disadvantages, which could be said to outweigh the advantages. There is a variety of ongoing work to address these issues, and this is discussed. Ultimately, genetic algorithms are selected as the most interesting potential avenue. Genetic algorithms have many potential benefits for mobile agents. The primary benefit is the potential for agents to become even more adaptive to situational changes in the environment and/or emergent security risks. There are secondary benefits such as the natural obfuscation of functions inherent to genetic algorithms. Pitfalls also exist, namely the difficulty of defining a satisfactory fitness function and the variable execution time of mobile agents arising from the fact that it exists on a network. DNAgents 1.0, an original application of genetic algorithms to mobile agents is implemented and discussed, and serves to highlight these difficulties. Modifications of traditional genetic algorithms are also discussed. Ultimately, a combination of genetic algorithms and artificial life is considered to be the most appropriate approach to mobile agents. This allows the consideration of agents to be organisms, and the network to be their environment. Towards this end, a novel framework called DNAgents 2.0 is designed and implemented. This framework allows the continual evolution of agents in a network without having a seperate training and deployment phase. Parameters for this new framework were defined and explored. Lastly, an experiment similar to DNAgents 1.0 is performed for comparative purposes against DNAgents 1.0 and to prove the viability of this new framework

    DATA DRIVEN INTELLIGENT AGENT NETWORKS FOR ADAPTIVE MONITORING AND CONTROL

    Get PDF
    To analyze the characteristics and predict the dynamic behaviors of complex systems over time, comprehensive research to enable the development of systems that can intelligently adapt to the evolving conditions and infer new knowledge with algorithms that are not predesigned is crucially needed. This dissertation research studies the integration of the techniques and methodologies resulted from the fields of pattern recognition, intelligent agents, artificial immune systems, and distributed computing platforms, to create technologies that can more accurately describe and control the dynamics of real-world complex systems. The need for such technologies is emerging in manufacturing, transportation, hazard mitigation, weather and climate prediction, homeland security, and emergency response. Motivated by the ability of mobile agents to dynamically incorporate additional computational and control algorithms into executing applications, mobile agent technology is employed in this research for the adaptive sensing and monitoring in a wireless sensor network. Mobile agents are software components that can travel from one computing platform to another in a network and carry programs and data states that are needed for performing the assigned tasks. To support the generation, migration, communication, and management of mobile monitoring agents, an embeddable mobile agent system (Mobile-C) is integrated with sensor nodes. Mobile monitoring agents visit distributed sensor nodes, read real-time sensor data, and perform anomaly detection using the equipped pattern recognition algorithms. The optimal control of agents is achieved by mimicking the adaptive immune response and the application of multi-objective optimization algorithms. The mobile agent approach provides potential to reduce the communication load and energy consumption in monitoring networks. The major research work of this dissertation project includes: (1) studying effective feature extraction methods for time series measurement data; (2) investigating the impact of the feature extraction methods and dissimilarity measures on the performance of pattern recognition; (3) researching the effects of environmental factors on the performance of pattern recognition; (4) integrating an embeddable mobile agent system with wireless sensor nodes; (5) optimizing agent generation and distribution using artificial immune system concept and multi-objective algorithms; (6) applying mobile agent technology and pattern recognition algorithms for adaptive structural health monitoring and driving cycle pattern recognition; (7) developing a web-based monitoring network to enable the visualization and analysis of real-time sensor data remotely. Techniques and algorithms developed in this dissertation project will contribute to research advances in networked distributed systems operating under changing environments

    Swarm Robotics

    Get PDF
    Collectively working robot teams can solve a problem more efficiently than a single robot, while also providing robustness and flexibility to the group. Swarm robotics model is a key component of a cooperative algorithm that controls the behaviors and interactions of all individuals. The robots in the swarm should have some basic functions, such as sensing, communicating, and monitoring, and satisfy the following properties
    • 

    corecore