3,011 research outputs found

    Automated Productivity Models for Earthmoving Operations

    Get PDF
    Earthmoving operations have significant importance, particularly for civil infrastructure projects. The performance of these operations should be monitored regularly to support timely recognition of undesirable productivity variances. Although productivity assessment occupies high importance in earthmoving operations, it does not provide sufficient information to assist project managers in taking the necessary actions in a timely manner. Assessment only is not capable of identifying problems encountered in these operations and their causes. Many studies recognized conditions and related factors that influence productivity of earthmoving operations. These conditions are mainly project-specific and vary from one project to another. Most of reported work in the literature focused on assessment rather than analysis of productivity. This study presents three integrated models that automate productivity measurement and analysis processes with capabilities to detect different adverse conditions that influence the productivity of earthmoving operations. The models exploit innovations in wireless and remote sensing technologies to provide project managers, contractors, and decision makers with a near-real-time automated productivity measurement and analysis. The developed models account for various uncertainties associated with earthmoving projects. The first model introduces a fuzzy-based standardization for customizing the configuration of onsite data acquisition systems for earthmoving operations. While the second model consists of two interrelated modules. The first is a customized automated data acquisition module, where a variety of sensors, smart boards, and microcontrollers are used to automate the data acquisition process. This module encompasses onsite fixed unit and a set of portable units attached to each truck used in the earthmoving fleet. The fixed unit is a communication gateway (Meshlium®), which has integrated MySQL database with data processing capabilities. Each mobile unit consists of a microcontroller equipped with a smart board that hosts a GPS module as well as a number of sensors such as accelerometer, temperature and humidity sensors, load cell and automated weather station. The second is a productivity measurement and analysis module, which processes and analyzes the data collected automatically in the first module. It automates the analysis process using data mining and machine learning techniques; providing a near-real-time web-based visualized representation of measurement and analysis outcomes. Artificial Neural Network (ANN) was used to model productivity losses due to the existence of different influencing conditions. Laboratory and field work was conducted in the development and validation processes of the developed models. The work encompassed field and scaled laboratory experiments. The laboratory experiments were conducted in an open to sky terrace to allow for a reliable access to GPS satellites. Also, to make a direct connection between the data communication gateway (Meshlium®), initially installed on a PC computer to observe the received data latency. The laboratory experiments unitized 1:24 scaled loader and dumping truck to simulate loading, hauling and dumping operations. The truck was instrumented with the microcontroller equipped with an accelerometer, GPS module, load cell, and soil water content sensor. Thirty simulated earthmoving cycles were conducted using the scaled equipment. The collected data was recorded in a micro secure digital (SD) card in a comma separated value (CSV) format. The field work was carried out in the city of Saint-Laurent, Montreal, Quebec, Canada using a passenger vehicle to mimic the hauling truck operational modes. Fifteen Field simulated earthmoving cycles were performed. In this work two roads with different surface conditions, but of equal length (1150 m) represented the haul and return roads. These two roads were selected to validate the developed road condition analysis algorithm and to study the model’s capability in determining the consequences of adverse road conditions on the haul and return durations and thus on the tuck and fleet productivity. The data collected from the lab experiments and field work was used as input for the developed model. The developed model has shown perfect recognition of the state of truck throughout the fifteen field simulated earthmoving cycles. The developed road condition analysis algorithm has demonstrated an accuracy of 83.3% and 82.6% in recognizing road bumps and potholes, respectively. Also, the results indicated tiny variances in measuring the durations compared with actual durations using time laps displayed on a smart cell telephone; with an average invalidity percentage AIP% of 1.89 % and 1.33% for the joint hauling and return duration and total cycle duration, respectively

    Big data analytics:Computational intelligence techniques and application areas

    Get PDF
    Big Data has significant impact in developing functional smart cities and supporting modern societies. In this paper, we investigate the importance of Big Data in modern life and economy, and discuss challenges arising from Big Data utilization. Different computational intelligence techniques have been considered as tools for Big Data analytics. We also explore the powerful combination of Big Data and Computational Intelligence (CI) and identify a number of areas, where novel applications in real world smart city problems can be developed by utilizing these powerful tools and techniques. We present a case study for intelligent transportation in the context of a smart city, and a novel data modelling methodology based on a biologically inspired universal generative modelling approach called Hierarchical Spatial-Temporal State Machine (HSTSM). We further discuss various implications of policy, protection, valuation and commercialization related to Big Data, its applications and deployment

    Remote Sensing

    Get PDF
    This dual conception of remote sensing brought us to the idea of preparing two different books; in addition to the first book which displays recent advances in remote sensing applications, this book is devoted to new techniques for data processing, sensors and platforms. We do not intend this book to cover all aspects of remote sensing techniques and platforms, since it would be an impossible task for a single volume. Instead, we have collected a number of high-quality, original and representative contributions in those areas

    Intelligent Circuits and Systems

    Get PDF
    ICICS-2020 is the third conference initiated by the School of Electronics and Electrical Engineering at Lovely Professional University that explored recent innovations of researchers working for the development of smart and green technologies in the fields of Energy, Electronics, Communications, Computers, and Control. ICICS provides innovators to identify new opportunities for the social and economic benefits of society.  This conference bridges the gap between academics and R&D institutions, social visionaries, and experts from all strata of society to present their ongoing research activities and foster research relations between them. It provides opportunities for the exchange of new ideas, applications, and experiences in the field of smart technologies and finding global partners for future collaboration. The ICICS-2020 was conducted in two broad categories, Intelligent Circuits & Intelligent Systems and Emerging Technologies in Electrical Engineering

    Advanced sensors technology survey

    Get PDF
    This project assesses the state-of-the-art in advanced or 'smart' sensors technology for NASA Life Sciences research applications with an emphasis on those sensors with potential applications on the space station freedom (SSF). The objectives are: (1) to conduct literature reviews on relevant advanced sensor technology; (2) to interview various scientists and engineers in industry, academia, and government who are knowledgeable on this topic; (3) to provide viewpoints and opinions regarding the potential applications of this technology on the SSF; and (4) to provide summary charts of relevant technologies and centers where these technologies are being developed

    Towards Massive Machine Type Communications in Ultra-Dense Cellular IoT Networks: Current Issues and Machine Learning-Assisted Solutions

    Get PDF
    The ever-increasing number of resource-constrained Machine-Type Communication (MTC) devices is leading to the critical challenge of fulfilling diverse communication requirements in dynamic and ultra-dense wireless environments. Among different application scenarios that the upcoming 5G and beyond cellular networks are expected to support, such as eMBB, mMTC and URLLC, mMTC brings the unique technical challenge of supporting a huge number of MTC devices, which is the main focus of this paper. The related challenges include QoS provisioning, handling highly dynamic and sporadic MTC traffic, huge signalling overhead and Radio Access Network (RAN) congestion. In this regard, this paper aims to identify and analyze the involved technical issues, to review recent advances, to highlight potential solutions and to propose new research directions. First, starting with an overview of mMTC features and QoS provisioning issues, we present the key enablers for mMTC in cellular networks. Along with the highlights on the inefficiency of the legacy Random Access (RA) procedure in the mMTC scenario, we then present the key features and channel access mechanisms in the emerging cellular IoT standards, namely, LTE-M and NB-IoT. Subsequently, we present a framework for the performance analysis of transmission scheduling with the QoS support along with the issues involved in short data packet transmission. Next, we provide a detailed overview of the existing and emerging solutions towards addressing RAN congestion problem, and then identify potential advantages, challenges and use cases for the applications of emerging Machine Learning (ML) techniques in ultra-dense cellular networks. Out of several ML techniques, we focus on the application of low-complexity Q-learning approach in the mMTC scenarios. Finally, we discuss some open research challenges and promising future research directions.Comment: 37 pages, 8 figures, 7 tables, submitted for a possible future publication in IEEE Communications Surveys and Tutorial

    Recent Developments in Smart Healthcare

    Get PDF
    Medicine is undergoing a sector-wide transformation thanks to the advances in computing and networking technologies. Healthcare is changing from reactive and hospital-centered to preventive and personalized, from disease focused to well-being centered. In essence, the healthcare systems, as well as fundamental medicine research, are becoming smarter. We anticipate significant improvements in areas ranging from molecular genomics and proteomics to decision support for healthcare professionals through big data analytics, to support behavior changes through technology-enabled self-management, and social and motivational support. Furthermore, with smart technologies, healthcare delivery could also be made more efficient, higher quality, and lower cost. In this special issue, we received a total 45 submissions and accepted 19 outstanding papers that roughly span across several interesting topics on smart healthcare, including public health, health information technology (Health IT), and smart medicine
    • …
    corecore