134 research outputs found

    Discrete and fuzzy dynamical genetic programming in the XCSF learning classifier system

    Full text link
    A number of representation schemes have been presented for use within learning classifier systems, ranging from binary encodings to neural networks. This paper presents results from an investigation into using discrete and fuzzy dynamical system representations within the XCSF learning classifier system. In particular, asynchronous random Boolean networks are used to represent the traditional condition-action production system rules in the discrete case and asynchronous fuzzy logic networks in the continuous-valued case. It is shown possible to use self-adaptive, open-ended evolution to design an ensemble of such dynamical systems within XCSF to solve a number of well-known test problems

    Adaptive rule-based malware detection employing learning classifier systems

    Get PDF
    Efficient and accurate malware detection is increasingly becoming a necessity for society to operate. Existing malware detection systems have excellent performance in identifying known malware for which signatures are available, but poor performance in anomaly detection for zero day exploits for which signatures have not yet been made available or targeted attacks against a specific entity. The primary goal of this thesis is to provide evidence for the potential of learning classier systems to improve the accuracy of malware detection. A customized system based on a state-of-the-art learning classier system is presented for adaptive rule-based malware detection, which combines a rule-based expert system with evolutionary algorithm based reinforcement learning, thus creating a self-training adaptive malware detection system which dynamically evolves detection rules. This system is analyzed on a benchmark of malicious and non-malicious files. Experimental results show that the system can outperform C4.5, a well-known non-adaptive machine learning algorithm, under certain conditions. The results demonstrate the system\u27s ability to learn effective rules from repeated presentations of a tagged training set and show the degree of generalization achieved on an independent test set. This thesis is an extension and expansion of the work published in the Security, Trust, and Privacy for Software Applications workshop in COMPSAC 2011 - the 35th Annual IEEE Signature Conference on Computer Software and Applications --Abstract, page iii

    Architecting system of systems: artificial life analysis of financial market behavior

    Get PDF
    This research study focuses on developing a framework that can be utilized by system architects to understand the emergent behavior of system architectures. The objective is to design a framework that is modular and flexible in providing different ways of modeling sub-systems of System of Systems. At the same time, the framework should capture the adaptive behavior of the system since evolution is one of the key characteristics of System of Systems. Another objective is to design the framework so that humans can be incorporated into the analysis. The framework should help system architects understand the behavior as well as promoters or inhibitors of change in human systems. Computational intelligence tools have been successfully used in analysis of Complex Adaptive Systems. Since a System of Systems is a collection of Complex Adaptive Systems, a framework utilizing combination of these tools can be developed. Financial markets are selected to demonstrate the various architectures developed from the analysis framework --Introduction, page 3
    • …
    corecore