4,265 research outputs found

    An hybridization of global-local methods for autonomous mobile robot navigation in partially-known environments

    Get PDF
    This paper deals with the navigation problem of an autonomous non-holonomic mobile robot in partially-known environment. In this proposed method, the entire process of navigation is divided into two phases: an off-line phase on which a distance-optimal reference trajectory enables the mobile robot to move from an initial position to a desired target which is planned using the B-spline method and the Dijkstra algorithm. In the online phase of the navigation process, the mobile robot follows the planned trajectory using a sliding mode controller with the ability of avoiding unexpected obstacles by the use of fuzzy logic controller. Also, the fuzzy logic and fuzzy wall-following controllers are used to accomplish the reactive navigation mission (path tracking and obstacle avoidance) for a comparative purpose. Simulation results prove that the proposed path planning method (B-spline) is simple and effective. Also, they attest that the sliding mode controller track more precisely the reference trajectory than the fuzzy logic controller (in terms of time elapsed to reach the target and stability of two wheels velocity) and this last gives best results than the wall-following controller in the avoidance of unexpected obstacles. Thus, the effectiveness of our proposed approach (B-spline method combined with sliding mode and fuzzy logic controllers) is proved compared to other techniques

    Fuzzy based obstacle avoidance system for autonomous mobile robot

    Get PDF
    The goal of this research was to develop a fuzzy obstacle avoidance system for an autonomous mobile robot using IR detection sensors. This paper presents implemented control architecture for behavior-based mobile robot. The mobile robot is able to interact with an unknown environment using a reactive strategy determined by sensory information. Current research in robotics aims to build autonomous and intelligent robots, which can plan its motion in a dynamic environment. Autonomous mobile robots are increasingly used in well structured environment such as warehouses, offices and industries. Fuzzy behavior able to make inferences is well suited for mobile robot navigation because of the uncertainty of the environment. A rule-based fuzzy controller with reactive behavior was implemented and tested on a two wheels mobile robot equipped with infrared sensors to perform collision-free navigation. The experimental results have shown that the proposed architecture provides an efficient and flexible solution for small wheeled mobile robots

    Realization of reactive control for multi purpose mobile agents

    Get PDF
    Mobile robots are built for different purposes, have different physical size, shape, mechanics and electronics. They are required to work in real-time, realize more than one goal simultaneously, hence to communicate and cooperate with other agents. The approach proposed in this paper for mobile robot control is reactive and has layered structure that supports multi sensor perception. Potential field method is implemented for both obstacle avoidance and goal tracking. However imaginary forces of the obstacles and of the goal point are separately treated, and then resulting behaviors are fused with the help of the geometry. Proposed control is tested on simulations where different scenarios are studied. Results have confirmed the high performance of the method

    A general learning co-evolution method to generalize autonomous robot navigation behavior

    Get PDF
    Congress on Evolutionary Computation. La Jolla, CA, 16-19 July 2000.A new coevolutive method, called Uniform Coevolution, is introduced, to learn weights for a neural network controller in autonomous robots. An evolutionary strategy is used to learn high-performance reactive behavior for navigation and collision avoidance. The coevolutive method allows the evolution of the environment, to learn a general behavior able to solve the problem in different environments. Using a traditional evolutionary strategy method without coevolution, the learning process obtains a specialized behavior. All the behaviors obtained, with or without coevolution have been tested in a set of environments and the capability for generalization has been shown for each learned behavior. A simulator based on the mini-robot Khepera has been used to learn each behavior. The results show that Uniform Coevolution obtains better generalized solutions to example-based problems

    HYBRID FUZZY CONTROL AND ANT COLONY OPTIMIZATION BASED PATH PLANNING FOR WHEEL MOBILE ROBOT NAVIGATION

    Get PDF
    Wheeled Mobile Robot (WMR) is extremely important for active target tracking control and reactive obstacle avoidance in an unstructured environment. A WMR needs the best control performance an automatic path planning to maintain a very high level of accuracy. Therefore, the development of control strategies and path planning is very significant. Hence, research was carried out to investigate the control and path planning issues of WMR in dynamic environment. Several controllers such as conventional controller Proportional (P), Integral (I), Derivative (D) and Fuzzy Logic controller were investigated. A Hybrid Controller for differential WMR was proposed. Various aspects of the research on WMR such as kinematics model, conventional controller, fuzzy controller and hybrid controller were discussed. Overall it was found that on average the Hybrid Controller gives the best performance with 5.5s, 5.4s and 11s for target of 10x 10y, 30x10y and 60x20y respectively

    An enhanced classifier system for autonomous robot navigation in dynamic environments

    Get PDF
    In many cases, a real robot application requires the navigation in dynamic environments. The navigation problem involves two main tasks: to avoid obstacles and to reach a goal. Generally, this problem could be faced considering reactions and sequences of actions. For solving the navigation problem a complete controller, including actions and reactions, is needed. Machine learning techniques has been applied to learn these controllers. Classifier Systems (CS) have proven their ability of continuos learning in these domains. However, CS have some problems in reactive systems. In this paper, a modified CS is proposed to overcome these problems. Two special mechanisms are included in the developed CS to allow the learning of both reactions and sequences of actions. The learning process has been divided in two main tasks: first, the discrimination between a predefined set of rules and second, the discovery of new rules to obtain a successful operation in dynamic environments. Different experiments have been carried out using a mini-robot Khepera to find a generalised solution. The results show the ability of the system to continuous learning and adaptation to new situations.Publicad

    An Integrated Architecture for Learning of Reactive Behaviors based on Dynamic Cell Structures

    Get PDF
    In this contribution we want to draw the readers attention to the advantages of controller architectures based on Dynamic Cell Structures (DCS) [5] for learning reactive behaviors of autonomous robots. These include incremental on-line learning, fast output calculation, a flexible integration of different learning rules and a close connection to fuzzy logic. The latter allows for incorporation of prior knowledge and to interpret learning with a DCS as fuzzy rule generation and ad aptation. After successful applications of DCS to tasks involving supervised learning, feedback error learning and incremental category learning, in this article we take reinforcement learning of reactive collision avoidance for an autonomous mobile robot as a further example to demonstrate the validity of our approach. More specifically, we employ a REINFORCE [23] algorithm in combination with an Adaptive Heuristic Critique (AHC) [21] to learn a continuous valued sensory motor mapping for obstacle avoidance with a TRC Labmate from delayed rein forcement. The sensory input consists of eight unprocessed sonar readings, the controller output is the continuous angular and forward velocity of the Labmate. The controller and the AHC are integrated within a single DCS network, and the resulting avoidance behavior of the robot can be analyzed as a set of fuzzy rules, each rule having an additional certainty value

    Neural network controller against environment: A coevolutive approach to generalize robot navigation behavior

    Get PDF
    In this paper, a new coevolutive method, called Uniform Coevolution, is introduced to learn weights of a neural network controller in autonomous robots. An evolutionary strategy is used to learn high-performance reactive behavior for navigation and collisions avoidance. The introduction of coevolutive over evolutionary strategies allows evolving the environment, to learn a general behavior able to solve the problem in different environments. Using a traditional evolutionary strategy method, without coevolution, the learning process obtains a specialized behavior. All the behaviors obtained, with/without coevolution have been tested in a set of environments and the capability of generalization is shown for each learned behavior. A simulator based on a mini-robot Khepera has been used to learn each behavior. The results show that Uniform Coevolution obtains better generalized solutions to examples-based problems.Publicad

    Evolving connection weights between sensors and actuators in robots

    Get PDF
    International Symposium on Industrial Electronics. Guimaraes, 7-11 July 1997.In this paper, an evolution strategy (ES) is introduced, to learn reactive behaviour in autonomous robots. An ES is used to learn high-performance reactive behaviour for navigation and collisions avoidance. The learned behaviour is able to solve the problem in a dynamic environment; so, the learning process has proven the ability to obtain generalised behaviours. The robot starts without information about the right associations between sensors and actuators, and, from this situation, the robot is able to learn, through experience, to reach the highest adaptability grade to the sensors information. No subjective information about “how to accomplish the task” is included in the fitness function. A mini-robot Khepera has been used to test the learned behaviour
    • 

    corecore