7,583 research outputs found

    What is the cost of maximizing ESG performance in the portfolio selection strategy? The case of The Dow Jones Index average stocks

    Full text link
    [EN] Portfolio selection is one of the main financial topics. The original portfolio selection problem dealt with the trade-off between return and risk, measured as the mean returns and the variance, respectively. For investors more variables other than return and risk are considered to select the stocks to be included in the portfolio. Nowadays, many investors include corporate social responsibility as one eligibility criterion. Additionally, other return and risk measures are being employed. All of this, together with further constraints such as portfolio cardinality, which mirror real-world demands by investors, have made the multicriteria portfolio selection problem to be NP-hard. To solve this problem, heuristics such as the non-dominated sorting genetic algorithm II have been developed. The aim of this paper is to analyse the trade-off between return, risk and corporate social responsibility. To this end, we construct pareto efficient portfolios using a fuzzy multicriteria portfolio selection model with real-world constraints. The model is applied on a set of 28 stocks which are constituents of the Dow Jones Industrial Average stock index. The analysis shows that portfolios scoring higher in corporate social responsibility obtain lower returns. As of the risk, the riskier portfolios are those with extreme (high or low) corporate social responsibility scores. Finally, applying the proposed portfolio selection methodology, it is possible to build investment portfolios that dominate the benchmark. That is, socially responsible portfolios, measured by ESG scores, must not necessarily be penalized in terms of return or risk.GarcĂ­a GarcĂ­a, F.; Gankova-Ivanova, T.; GonzĂĄlez-Bueno, J.; Oliver-Muncharaz, J.; Tamosiuniene, R. (2022). What is the cost of maximizing ESG performance in the portfolio selection strategy? The case of The Dow Jones Index average stocks. Enterpreneurship and Sustainability Issues. 9(4):178-192. https://doi.org/10.9770/jesi.2022.9.3(9)1781929

    Ortalama-varyans portföy optimizasyonunda genetik algoritma uygulamaları ĂŒzerine bir literatĂŒr araƟtırması

    Get PDF
    Mean-variance portfolio optimization model, introduced by Markowitz, provides a fundamental answer to the problem of portfolio management. This model seeks an efficient frontier with the best trade-offs between two conflicting objectives of maximizing return and minimizing risk. The problem of determining an efficient frontier is known to be NP-hard. Due to the complexity of the problem, genetic algorithms have been widely employed by a growing number of researchers to solve this problem. In this study, a literature review of genetic algorithms implementations on mean-variance portfolio optimization is examined from the recent published literature. Main specifications of the problems studied and the specifications of suggested genetic algorithms have been summarized

    Selecting socially responsible portfolios: A fuzzy multicriteria approach

    Full text link
    [EN] We propose a multi-objective approach for portfolio selection, which allows investors to consider not only return and downside risk criteria but also to include environmental, social and governance (ESG) scores in the investment decision-making process. Owing to the uncertain environment of portfolio selection, the return and ESG score of each asset are considered as independent L-R power fuzzy variables. To make the model more realistic, we take budget, floor ceiling and cardinality constraints into account. In order to select the optimal portfolio along the efficient frontier, we apply the Sortino ratio in a credibilistic environment. The subsequent empirical application uses a data set from Bloomberg's ESG Data in combination with US Dow Jones Industrial Average data. The experimental results show that the proposed model offers promising results for socially responsible investors seeking ethical and sustainability goals beyond the return-risk trade-off and its ability to beat the benchmarkGarcĂ­a GarcĂ­a, F.; Gonzalez-Bueno, J.; Oliver-Muncharaz, J.; Riley, N. (2019). Selecting socially responsible portfolios: A fuzzy multicriteria approach. Sustainability. 11(9). https://doi.org/10.3390/su11092496S119Ballestero, E., PĂ©rez-Gladish, B., & Garcia-Bernabeu, A. (2014). The Ethical Financial Question and the MCDM Framework. International Series in Operations Research & Management Science, 3-22. doi:10.1007/978-3-319-11836-9_1Zopounidis, C., & Doumpos, M. (2002). Multicriteria classification and sorting methods: A literature review. European Journal of Operational Research, 138(2), 229-246. doi:10.1016/s0377-2217(01)00243-0ARRIBAS, I., GARCÍA, F., GUIJARRO, F., OLIVER, J., & TAMOĆ IĆȘNIENĖ, R. (2016). MASS APPRAISAL OF RESIDENTIAL REAL ESTATE USING MULTILEVEL MODELLING. International Journal of Strategic Property Management, 20(1), 77-87. doi:10.3846/1648715x.2015.1134702GarcĂ­a, F., Guijarro, F., Oliver, J., & TamoĆĄiĆ«nienė, R. (2018). HYBRID FUZZY NEURAL NETWORK TO PREDICT PRICE DIRECTION IN THE GERMAN DAX-30 INDEX. Technological and Economic Development of Economy, 24(6), 2161-2178. doi:10.3846/tede.2018.6394Xidonas, P., Doukas, H., Mavrotas, G., & Pechak, O. (2015). Environmental corporate responsibility for investments evaluation: an alternative multi-objective programming model. Annals of Operations Research, 247(2), 395-413. doi:10.1007/s10479-015-1820-xMiralles-QuirĂłs, M. del M., & Miralles-QuirĂłs, J. L. (2015). Improving Diversification Opportunities for Socially Responsible Investors. Journal of Business Ethics, 140(2), 339-351. doi:10.1007/s10551-015-2691-4JERÓNIMO SILVESTRE, W., ANTUNES, P., & LEAL FILHO, W. (2016). THE CORPORATE SUSTAINABILITY TYPOLOGY: ANALYSING SUSTAINABILITY DRIVERS AND FOSTERING SUSTAINABILITY AT ENTERPRISES. Technological and Economic Development of Economy, 24(2), 513-533. doi:10.3846/20294913.2016.1213199Rahman, S., Lee, C.-F., & Xiao, Y. (2016). The investment performance, attributes, and investment behavior of ethical equity mutual funds in the US: an empirical investigation. Review of Quantitative Finance and Accounting, 49(1), 91-116. doi:10.1007/s11156-016-0581-1Bouslah, K., Kryzanowski, L., & M’Zali, B. (2013). The impact of the dimensions of social performance on firm risk. Journal of Banking & Finance, 37(4), 1258-1273. doi:10.1016/j.jbankfin.2012.12.004Petrillo, A., De Felice, F., GarcĂ­a-MelĂłn, M., & PĂ©rez-Gladish, B. (2016). Investing in socially responsible mutual funds: Proposal of non-financial ranking in Italian market. Research in International Business and Finance, 37, 541-555. doi:10.1016/j.ribaf.2016.01.027Fowler, S. J., & Hope, C. (2007). A Critical Review of Sustainable Business Indices and their Impact. Journal of Business Ethics, 76(3), 243-252. doi:10.1007/s10551-007-9590-2JankalovĂĄ, M., & Jankal, R. (2017). The assessment of corporate social responsibility: approaches analysis. Entrepreneurship and Sustainability Issues, 4(4), 441-459. doi:10.9770/jesi.2017.4.4(4)Smaliukienė, R., & Monni, S. (2019). A step-by-step approach to social marketing in energy transition. Insights into Regional Development, 1(1), 19-32. doi:10.9770/ird.2019.1.1(2)Anagnostopoulos, T., Skouloudis, A., Khan, N., & Evangelinos, K. (2018). Incorporating Sustainability Considerations into Lending Decisions and the Management of Bad Loans: Evidence from Greece. Sustainability, 10(12), 4728. doi:10.3390/su10124728Charlo, M., Moya, I., & Muñoz, A. (2017). Financial Performance of Socially Responsible Firms: The Short- and Long-Term Impact. Sustainability, 9(9), 1622. doi:10.3390/su9091622De Colle, S., & York, J. G. (2008). Why Wine is not Glue? The Unresolved Problem of Negative Screening in Socially Responsible Investing. Journal of Business Ethics, 85(S1), 83-95. doi:10.1007/s10551-008-9949-zDerwall, J., & Koedijk, K. (2009). Socially Responsible Fixed-Income Funds. Journal of Business Finance & Accounting, 36(1-2), 210-229. doi:10.1111/j.1468-5957.2008.02119.xWu, J., Lodorfos, G., Dean, A., & Gioulmpaxiotis, G. (2015). The Market Performance of Socially Responsible Investment during Periods of the Economic Cycle - Illustrated Using the Case of FTSE. Managerial and Decision Economics, 38(2), 238-251. doi:10.1002/mde.2772Chang, C. E., & Doug Witte, H. (2010). Performance Evaluation of U.S. Socially Responsible Mutual Funds: Revisiting Doing Good and Doing Well. American Journal of Business, 25(1), 9-24. doi:10.1108/19355181201000001Cortez, M. C., Silva, F., & Areal, N. (2008). The Performance of European Socially Responsible Funds. Journal of Business Ethics, 87(4), 573-588. doi:10.1007/s10551-008-9959-xInvesting in Socially Responsible Mutual Fundshttps://repository.upenn.edu/cgi/viewcontent.cgi?article=1444&context=fnce_papersJones, S., van der Laan, S., Frost, G., & Loftus, J. (2007). The Investment Performance of Socially Responsible Investment Funds in Australia. Journal of Business Ethics, 80(2), 181-203. doi:10.1007/s10551-007-9412-6Renneboog, L., Ter Horst, J., & Zhang, C. (2008). Socially responsible investments: Institutional aspects, performance, and investor behavior. Journal of Banking & Finance, 32(9), 1723-1742. doi:10.1016/j.jbankfin.2007.12.039Bauer, R., Koedijk, K., & Otten, R. (2005). International evidence on ethical mutual fund performance and investment style. Journal of Banking & Finance, 29(7), 1751-1767. doi:10.1016/j.jbankfin.2004.06.035BrzeszczyƄski, J., & McIntosh, G. (2013). Performance of Portfolios Composed of British SRI Stocks. Journal of Business Ethics, 120(3), 335-362. doi:10.1007/s10551-012-1541-xGoldreyer, E. F., & Diltz, J. D. (1999). The performance of socially responsible mutual funds: incorporating sociopolitical information in portfolio selection. Managerial Finance, 25(1), 23-36. doi:10.1108/03074359910765830Hamilton, S., Jo, H., & Statman, M. (1993). Doing Well While Doing Good? The Investment Performance of Socially Responsible Mutual Funds. Financial Analysts Journal, 49(6), 62-66. doi:10.2469/faj.v49.n6.62Revelli, C., & Viviani, J.-L. (2014). Financial performance of socially responsible investing (SRI): what have we learned? A meta-analysis. Business Ethics: A European Review, 24(2), 158-185. doi:10.1111/beer.12076McWilliams, A., & Siegel, D. (2001). Corporate Social Responsibility: a Theory of the Firm Perspective. Academy of Management Review, 26(1), 117-127. doi:10.5465/amr.2001.4011987El Ghoul, S., Guedhami, O., Kwok, C. C. Y., & Mishra, D. R. (2011). Does corporate social responsibility affect the cost of capital? Journal of Banking & Finance, 35(9), 2388-2406. doi:10.1016/j.jbankfin.2011.02.007Attig, N., El Ghoul, S., Guedhami, O., & Suh, J. (2013). Corporate Social Responsibility and Credit Ratings. Journal of Business Ethics, 117(4), 679-694. doi:10.1007/s10551-013-1714-2Cheng, B., Ioannou, I., & Serafeim, G. (2013). Corporate social responsibility and access to finance. Strategic Management Journal, 35(1), 1-23. doi:10.1002/smj.2131Hallerbach, W. (2004). A framework for managing a portfolio of socially responsible investments. European Journal of Operational Research, 153(2), 517-529. doi:10.1016/s0377-2217(03)00172-3Steuer, R. E., Qi, Y., & Hirschberger, M. (2006). Suitable-portfolio investors, nondominated frontier sensitivity, and the effect of multiple objectives on standard portfolio selection. Annals of Operations Research, 152(1), 297-317. doi:10.1007/s10479-006-0137-1Bilbao-Terol, A., Arenas-Parra, M., & Cañal-FernĂĄndez, V. (2012). A fuzzy multi-objective approach for sustainable investments. Expert Systems with Applications, 39(12), 10904-10915. doi:10.1016/j.eswa.2012.03.034Calvo, C., Ivorra, C., & Liern, V. (2014). Fuzzy portfolio selection with non-financial goals: exploring the efficient frontier. Annals of Operations Research, 245(1-2), 31-46. doi:10.1007/s10479-014-1561-2Li, Z. F., Minor, D., Wang, J., & Yu, C. (2018). A Learning Curve of the Market: Chasing Alpha of Socially Responsible Firms. SSRN Electronic Journal. doi:10.2139/ssrn.3224796Bilbao-Terol, A., Arenas-Parra, M., Cañal-FernĂĄndez, V., & Obam-Eyang, P. N. (2018). Multi-criteria analysis of the GRI sustainability reports: an application to Socially Responsible Investment. Journal of the Operational Research Society, 69(10), 1576-1598. doi:10.1057/s41274-017-0229-0Gasser, S. M., Rammerstorfer, M., & Weinmayer, K. (2017). Markowitz revisited: Social portfolio engineering. European Journal of Operational Research, 258(3), 1181-1190. doi:10.1016/j.ejor.2016.10.043Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8(3), 338-353. doi:10.1016/s0019-9958(65)90241-xGupta, P., Mehlawat, M. K., & Saxena, A. (2013). Hybrid optimization models of portfolio selection involving financial and ethical considerations. Knowledge-Based Systems, 37, 318-337. doi:10.1016/j.knosys.2012.08.014Baoding Liu, & Yian-Kui Liu. (2002). Expected value of fuzzy variable and fuzzy expected value models. IEEE Transactions on Fuzzy Systems, 10(4), 445-450. doi:10.1109/tfuzz.2002.800692Barak, S., Abessi, M., & Modarres, M. (2013). Fuzzy turnover rate chance constraints portfolio model. European Journal of Operational Research, 228(1), 141-147. doi:10.1016/j.ejor.2013.01.036Huang, X. (2006). Fuzzy chance-constrained portfolio selection. Applied Mathematics and Computation, 177(2), 500-507. doi:10.1016/j.amc.2005.11.027Vercher, E., & BermĂșdez, J. D. (2015). Portfolio optimization using a credibility mean-absolute semi-deviation model. Expert Systems with Applications, 42(20), 7121-7131. doi:10.1016/j.eswa.2015.05.020Gupta, P., Mittal, G., & Mehlawat, M. K. (2013). Expected value multiobjective portfolio rebalancing model with fuzzy parameters. Insurance: Mathematics and Economics, 52(2), 190-203. doi:10.1016/j.insmatheco.2012.12.002Mohebbi, N., & Najafi, A. A. (2018). Credibilistic multi-period portfolio optimization based on scenario tree. Physica A: Statistical Mechanics and its Applications, 492, 1302-1316. doi:10.1016/j.physa.2017.11.058Jalota, H., Thakur, M., & Mittal, G. (2017). Modelling and constructing membership function for uncertain portfolio parameters: A credibilistic framework. Expert Systems with Applications, 71, 40-56. doi:10.1016/j.eswa.2016.11.014GarcĂ­a, F., GonzĂĄlez-Bueno, J., Oliver, J., & TamoĆĄiĆ«nienė, R. (2019). A CREDIBILISTIC MEAN-SEMIVARIANCE-PER PORTFOLIO SELECTION MODEL FOR LATIN AMERICA. Journal of Business Economics and Management, 20(2), 225-243. doi:10.3846/jbem.2019.8317Markowitz, H., Todd, P., Xu, G., & Yamane, Y. (1993). Computation of mean-semivariance efficient sets by the Critical Line Algorithm. Annals of Operations Research, 45(1), 307-317. doi:10.1007/bf02282055Sortino, F. A., & van der Meer, R. (1991). Downside risk. The Journal of Portfolio Management, 17(4), 27-31. doi:10.3905/jpm.1991.409343Vercher, E., & BermĂșdez, J. D. (2012). Fuzzy Portfolio Selection Models: A Numerical Study. Financial Decision Making Using Computational Intelligence, 253-280. doi:10.1007/978-1-4614-3773-4_10Vercher, E., & Bermudez, J. D. (2013). A Possibilistic Mean-Downside Risk-Skewness Model for Efficient Portfolio Selection. IEEE Transactions on Fuzzy Systems, 21(3), 585-595. doi:10.1109/tfuzz.2012.2227487Liagkouras, K., & Metaxiotis, K. (2015). Efficient Portfolio Construction with the Use of Multiobjective Evolutionary Algorithms: Best Practices and Performance Metrics. International Journal of Information Technology & Decision Making, 14(03), 535-564. doi:10.1142/s0219622015300013Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. (2002). A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, 6(2), 182-197. doi:10.1109/4235.996017Gupta, P., Mehlawat, M. K., Inuiguchi, M., & Chandra, S. (2014). Portfolio Optimization with Interval Coefficients. Studies in Fuzziness and Soft Computing, 33-59. doi:10.1007/978-3-642-54652-5_2Sharpe, W. F. (1966). Mutual Fund Performance. The Journal of Business, 39(S1), 119. doi:10.1086/29484

    Multiobjective Approach to Portfolio Optimization in the Light of the Credibility Theory

    Get PDF
    [EN] The present research proposes a novel methodology to solve the problems faced by investors who take into consideration different investment criteria in a fuzzy context. The approach extends the stochastic mean-variance model to a fuzzy multiobjective model where liquidity is considered to quantify portfolio's performance, apart from the usual metrics like return and risk. The uncertainty of the future returns and the future liquidity of the potential assets are modelled employing trapezoidal fuzzy numbers. The decision process of the proposed approach considers that portfolio selection is a multidimensional issue and also some realistic constraints applied by investors. Particularly, this approach optimizes the expected return, the risk and the expected liquidity of the portfolio, considering bound constraints and cardinality restrictions. As a result, an optimization problem for the constraint portfolio appears, which is solved by means of the NSGA-II algorithm. This study defines the credibilistic Sortino ratio and the credibilistic STARR ratio for selecting the optimal portfolio. An empirical study on the S&P100 index is included to show the performance of the model in practical applications. The results obtained demonstrate that the novel approach can beat the index in terms of return and risk in the analyzed period, from 2008 until 2018.GarcĂ­a GarcĂ­a, F.; GonzĂĄlez-Bueno, J.; Guijarro, F.; Oliver-Muncharaz, J.; Tamosiuniene, R. (2020). Multiobjective Approach to Portfolio Optimization in the Light of the Credibility Theory. Technological and Economic Development of Economy (Online). 26(6):1165-1186. https://doi.org/10.3846/tede.2020.13189S11651186266Acerbi, C., & Tasche, D. (2002). On the coherence of expected shortfall. Journal of Banking & Finance, 26(7), 1487-1503. doi:10.1016/s0378-4266(02)00283-2Ahmed, A., Ali, R., Ejaz, A., & Ahmad, I. (2018). Sectoral integration and investment diversification opportunities: evidence from Colombo Stock Exchange. Entrepreneurship and Sustainability Issues, 5(3), 514-527. doi:10.9770/jesi.2018.5.3(8)Arenas Parra, M., Bilbao Terol, A., & Rodrı́guez Urı́a, M. V. (2001). A fuzzy goal programming approach to portfolio selection. European Journal of Operational Research, 133(2), 287-297. doi:10.1016/s0377-2217(00)00298-8Arribas, I., EspinĂłs-Vañó, M. D., GarcĂ­a, F., & TamoĆĄiĆ«nienė, R. (2019). Negative screening and sustainable portfolio diversification. Entrepreneurship and Sustainability Issues, 6(4), 1566-1586. doi:10.9770/jesi.2019.6.4(2)Artzner, P., Delbaen, F., Eber, J.-M., & Heath, D. (1999). Coherent Measures of Risk. Mathematical Finance, 9(3), 203-228. doi:10.1111/1467-9965.00068Bawa, V. S. (1975). Optimal rules for ordering uncertain prospects. Journal of Financial Economics, 2(1), 95-121. doi:10.1016/0304-405x(75)90025-2BermĂșdez, J. D., Segura, J. V., & Vercher, E. (2012). A multi-objective genetic algorithm for cardinality constrained fuzzy portfolio selection. Fuzzy Sets and Systems, 188(1), 16-26. doi:10.1016/j.fss.2011.05.013Bezoui, M., MoulaĂŻ, M., Bounceur, A., & Euler, R. (2018). An iterative method for solving a bi-objective constrained portfolio optimization problem. Computational Optimization and Applications, 72(2), 479-498. doi:10.1007/s10589-018-0052-9Bi, T., Zhang, B., & Wu, H. (2013). Measuring Downside Risk Using High-Frequency Data: Realized Downside Risk Measure. Communications in Statistics - Simulation and Computation, 42(4), 741-754. doi:10.1080/03610918.2012.655826Carlsson, C., FullĂ©r, R., & Majlender, P. (2002). A possibilistic approach to selecting portfolios with highest utility score. Fuzzy Sets and Systems, 131(1), 13-21. doi:10.1016/s0165-0114(01)00251-2Chen, W., & Xu, W. (2018). A Hybrid Multiobjective Bat Algorithm for Fuzzy Portfolio Optimization with Real-World Constraints. International Journal of Fuzzy Systems, 21(1), 291-307. doi:10.1007/s40815-018-0533-0Choobineh, F., & Branting, D. (1986). A simple approximation for semivariance. European Journal of Operational Research, 27(3), 364-370. doi:10.1016/0377-2217(86)90332-2Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. (2002). A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, 6(2), 182-197. doi:10.1109/4235.996017Fang, Y., Lai, K. K., & Wang, S.-Y. (2006). Portfolio rebalancing model with transaction costs based on fuzzy decision theory. European Journal of Operational Research, 175(2), 879-893. doi:10.1016/j.ejor.2005.05.020Favre, L., & Galeano, J.-A. (2002). Mean-Modified Value-at-Risk Optimization with Hedge Funds. The Journal of Alternative Investments, 5(2), 21-25. doi:10.3905/jai.2002.319052GarcĂ­a, F., GonzĂĄlez-Bueno, J., Guijarro, F., & Oliver, J. (2020). Forecasting the Environmental, Social, and Governance Rating of Firms by Using Corporate Financial Performance Variables: A Rough Set Approach. Sustainability, 12(8), 3324. doi:10.3390/su12083324GarcĂ­a, GonzĂĄlez-Bueno, Oliver, & Riley. (2019). Selecting Socially Responsible Portfolios: A Fuzzy Multicriteria Approach. Sustainability, 11(9), 2496. doi:10.3390/su11092496GarcĂ­a, F., GonzĂĄlez-Bueno, J., Oliver, J., & TamoĆĄiĆ«nienė, R. (2019). A CREDIBILISTIC MEAN-SEMIVARIANCE-PER PORTFOLIO SELECTION MODEL FOR LATIN AMERICA. Journal of Business Economics and Management, 20(2), 225-243. doi:10.3846/jbem.2019.8317GarcĂ­a, F., Guijarro, F., & Moya, I. (2013). A MULTIOBJECTIVE MODEL FOR PASSIVE PORTFOLIO MANAGEMENT: AN APPLICATION ON THE S&P 100 INDEX. Journal of Business Economics and Management, 14(4), 758-775. doi:10.3846/16111699.2012.668859GarcĂ­a, F., Guijarro, F., & Oliver, J. (2017). Index tracking optimization with cardinality constraint: a performance comparison of genetic algorithms and tabu search heuristics. Neural Computing and Applications, 30(8), 2625-2641. doi:10.1007/s00521-017-2882-2GarcĂ­a, F., Guijarro, F., Oliver, J., & TamoĆĄiĆ«nienė, R. (2018). HYBRID FUZZY NEURAL NETWORK TO PREDICT PRICE DIRECTION IN THE GERMAN DAX-30 INDEX. Technological and Economic Development of Economy, 24(6), 2161-2178. doi:10.3846/tede.2018.6394Goel, A., Sharma, A., & Mehra, A. (2018). Index tracking and enhanced indexing using mixed conditional value-at-risk. Journal of Computational and Applied Mathematics, 335, 361-380. doi:10.1016/j.cam.2017.12.015GonzĂĄlez-Bueno, J. (2019). OptimizaciĂłn multiobjetivo para la selecciĂłn de carteras a la luz de la teorĂ­a de la credibilidad. Una aplicaciĂłn en el mercado integrado latinoamericano. Editorial Universidad Pontificia Bolivariana.Gupta, P., Inuiguchi, M., & Mehlawat, M. K. (2011). A hybrid approach for constructing suitable and optimal portfolios. Expert Systems with Applications, 38(5), 5620-5632. doi:10.1016/j.eswa.2010.10.073Gupta, P., Inuiguchi, M., Mehlawat, M. K., & Mittal, G. (2013). Multiobjective credibilistic portfolio selection model with fuzzy chance-constraints. Information Sciences, 229, 1-17. doi:10.1016/j.ins.2012.12.011Gupta, P., Mehlawat, M. K., Inuiguchi, M., & Chandra, S. (2014). Portfolio Optimization Using Credibility Theory. Studies in Fuzziness and Soft Computing, 127-160. doi:10.1007/978-3-642-54652-5_5Gupta, P., Mehlawat, M. K., Inuiguchi, M., & Chandra, S. (2014). Portfolio Optimization with Interval Coefficients. Studies in Fuzziness and Soft Computing, 33-59. doi:10.1007/978-3-642-54652-5_2Gupta, P., Mehlawat, M. K., Kumar, A., Yadav, S., & Aggarwal, A. (2020). A Credibilistic Fuzzy DEA Approach for Portfolio Efficiency Evaluation and Rebalancing Toward Benchmark Portfolios Using Positive and Negative Returns. International Journal of Fuzzy Systems, 22(3), 824-843. doi:10.1007/s40815-020-00801-4Gupta, P., Mehlawat, M. K., & Saxena, A. (2010). A hybrid approach to asset allocation with simultaneous consideration of suitability and optimality. Information Sciences, 180(11), 2264-2285. doi:10.1016/j.ins.2010.02.007Gupta, P., Mehlawat, M. K., Yadav, S., & Kumar, A. (2020). Intuitionistic fuzzy optimistic and pessimistic multi-period portfolio optimization models. Soft Computing, 24(16), 11931-11956. doi:10.1007/s00500-019-04639-3Gupta, P., Mittal, G., & Mehlawat, M. K. (2013). Expected value multiobjective portfolio rebalancing model with fuzzy parameters. Insurance: Mathematics and Economics, 52(2), 190-203. doi:10.1016/j.insmatheco.2012.12.002Heidari-Fathian, H., & Davari-Ardakani, H. (2019). Bi-objective optimization of a project selection and adjustment problem under risk controls. Journal of Modelling in Management, 15(1), 89-111. doi:10.1108/jm2-07-2018-0106Hilkevics, S., & Semakina, V. (2019). The classification and comparison of business ratios analysis methods. Insights into Regional Development, 1(1), 48-57. doi:10.9770/ird.2019.1.1(4)Huang, X. (2006). Fuzzy chance-constrained portfolio selection. Applied Mathematics and Computation, 177(2), 500-507. doi:10.1016/j.amc.2005.11.027Huang, X. (2008). Mean-semivariance models for fuzzy portfolio selection. Journal of Computational and Applied Mathematics, 217(1), 1-8. doi:10.1016/j.cam.2007.06.009Huang, X. (2009). A review of credibilistic portfolio selection. Fuzzy Optimization and Decision Making, 8(3), 263-281. doi:10.1007/s10700-009-9064-3Huang, X. (2010). Portfolio Analysis. Studies in Fuzziness and Soft Computing. doi:10.1007/978-3-642-11214-0Huang, X. (2017). A review of uncertain portfolio selection. Journal of Intelligent & Fuzzy Systems, 32(6), 4453-4465. doi:10.3233/jifs-169211Huang, X., & Di, H. (2016). Uncertain portfolio selection with background risk. Applied Mathematics and Computation, 276, 284-296. doi:10.1016/j.amc.2015.12.018Huang, X., & Wang, X. (2019). International portfolio optimization based on uncertainty theory. Optimization, 70(2), 225-249. doi:10.1080/02331934.2019.1705821Huang, X., & Yang, T. (2020). How does background risk affect portfolio choice: An analysis based on uncertain mean-variance model with background risk. Journal of Banking & Finance, 111, 105726. doi:10.1016/j.jbankfin.2019.105726Jalota, H., Thakur, M., & Mittal, G. (2017). Modelling and constructing membership function for uncertain portfolio parameters: A credibilistic framework. Expert Systems with Applications, 71, 40-56. doi:10.1016/j.eswa.2016.11.014Jalota, H., Thakur, M., & Mittal, G. (2017). A credibilistic decision support system for portfolio optimization. Applied Soft Computing, 59, 512-528. doi:10.1016/j.asoc.2017.05.054Kaplan, P. D., & Alldredge, R. H. (1997). Semivariance in Risk-Based Index Construction. The Journal of Investing, 6(2), 82-87. doi:10.3905/joi.1997.408419Konno, H., & Yamazaki, H. (1991). Mean-Absolute Deviation Portfolio Optimization Model and Its Applications to Tokyo Stock Market. Management Science, 37(5), 519-531. doi:10.1287/mnsc.37.5.519Li, B., Zhu, Y., Sun, Y., Aw, G., & Teo, K. L. (2018). Multi-period portfolio selection problem under uncertain environment with bankruptcy constraint. Applied Mathematical Modelling, 56, 539-550. doi:10.1016/j.apm.2017.12.016Li, H.-Q., & Yi, Z.-H. (2019). Portfolio selection with coherent Investor’s expectations under uncertainty. Expert Systems with Applications, 133, 49-58. doi:10.1016/j.eswa.2019.05.008Li, X., & Qin, Z. (2014). Interval portfolio selection models within the framework of uncertainty theory. Economic Modelling, 41, 338-344. doi:10.1016/j.econmod.2014.05.036Liagkouras, K., & Metaxiotis, K. (2015). Efficient Portfolio Construction with the Use of Multiobjective Evolutionary Algorithms: Best Practices and Performance Metrics. International Journal of Information Technology & Decision Making, 14(03), 535-564. doi:10.1142/s0219622015300013Liu, B. (2004). Uncertainty Theory. Studies in Fuzziness and Soft Computing. doi:10.1007/978-3-540-39987-2Baoding Liu, & Yian-Kui Liu. (2002). Expected value of fuzzy variable and fuzzy expected value models. IEEE Transactions on Fuzzy Systems, 10(4), 445-450. doi:10.1109/tfuzz.2002.800692Liu, N., Chen, Y., & Liu, Y. (2018). Optimizing portfolio selection problems under credibilistic CVaR criterion. Journal of Intelligent & Fuzzy Systems, 34(1), 335-347. doi:10.3233/jifs-171298Liu, Y.-J., & Zhang, W.-G. (2018). Multiperiod Fuzzy Portfolio Selection Optimization Model Based on Possibility Theory. International Journal of Information Technology & Decision Making, 17(03), 941-968. doi:10.1142/s0219622018500190Mansour, N., Cherif, M. S., & Abdelfattah, W. (2019). Multi-objective imprecise programming for financial portfolio selection with fuzzy returns. Expert Systems with Applications, 138, 112810. doi:10.1016/j.eswa.2019.07.027Markowitz, H. (1952). PORTFOLIO SELECTION*. The Journal of Finance, 7(1), 77-91. doi:10.1111/j.1540-6261.1952.tb01525.xMarkowitz, H., Todd, P., Xu, G., & Yamane, Y. (1993). Computation of mean-semivariance efficient sets by the Critical Line Algorithm. Annals of Operations Research, 45(1), 307-317. doi:10.1007/bf02282055Martin, R. D., Rachev, S. (Zari), & Siboulet, F. (2003). Phi-alpha optimal portfolios and extreme risk management. Wilmott, 2003(6), 70-83. doi:10.1002/wilm.42820030619Mehlawat, M. K. (2016). Credibilistic mean-entropy models for multi-period portfolio selection with multi-choice aspiration levels. Information Sciences, 345, 9-26. doi:10.1016/j.ins.2016.01.042Mehlawat, M. K., Gupta, P., Kumar, A., Yadav, S., & Aggarwal, A. (2020). Multiobjective Fuzzy Portfolio Performance Evaluation Using Data Envelopment Analysis Under Credibilistic Framework. IEEE Transactions on Fuzzy Systems, 28(11), 2726-2737. doi:10.1109/tfuzz.2020.2969406Mehralizade, R., Amini, M., Sadeghpour Gildeh, B., & Ahmadzade, H. (2020). Uncertain random portfolio selection based on risk curve. Soft Computing, 24(17), 13331-13345. doi:10.1007/s00500-020-04751-9Moeini, M. (2019). Solving the index tracking problem: a continuous optimization approach. Central European Journal of Operations Research. doi:10.1007/s10100-019-00633-0Narkunienė, J., & Ulbinaitė, A. (2018). Comparative analysis of company performance evaluation methods. Entrepreneurship and Sustainability Issues, 6(1), 125-138. doi:10.9770/jesi.2018.6.1(10)Palanikumar, K., Latha, B., Senthilkumar, V. S., & Karthikeyan, R. (2009). Multiple performance optimization in machining of GFRP composites by a PCD tool using non-dominated sorting genetic algorithm (NSGA-II). Metals and Materials International, 15(2), 249-258. doi:10.1007/s12540-009-0249-7Pflug, G. C. (2000). Some Remarks on the Value-at-Risk and the Conditional Value-at-Risk. Probabilistic Constrained Optimization, 272-281. doi:10.1007/978-1-4757-3150-7_15Rockafellar, R. T., & Uryasev, S. (2000). Optimization of conditional value-at-risk. The Journal of Risk, 2(3), 21-41. doi:10.21314/jor.2000.038Rockafellar, R. T., & Uryasev, S. (2002). Conditional value-at-risk for general loss distributions. Journal of Banking & Finance, 26(7), 1443-1471. doi:10.1016/s0378-4266(02)00271-6Rubio, A., BermĂșdez, J. D., & Vercher, E. (2016). Forecasting portfolio returns using weighted fuzzy time series methods. International Journal of Approximate Reasoning, 75, 1-12. doi:10.1016/j.ijar.2016.03.007Saborido, R., Ruiz, A. B., BermĂșdez, J. D., Vercher, E., & Luque, M. (2016). Evolutionary multi-objective optimization algorithms for fuzzy portfolio selection. Applied Soft Computing, 39, 48-63. doi:10.1016/j.asoc.2015.11.005Sharpe, W. F. (1966). Mutual Fund Performance. The Journal of Business, 39(S1), 119. doi:10.1086/294846Sharpe, W. F. (1994). The Sharpe Ratio. The Journal of Portfolio Management, 21(1), 49-58. doi:10.3905/jpm.1994.409501Sortino, F. A., & Price, L. N. (1994). Performance Measurement in a Downside Risk Framework. The Journal of Investing, 3(3), 59-64. doi:10.3905/joi.3.3.59Srinivas, N., & Deb, K. (1994). Muiltiobjective Optimization Using Nondominated Sorting in Genetic Algorithms. Evolutionary Computation, 2(3), 221-248. doi:10.1162/evco.1994.2.3.221Vercher, E., & BermĂșdez, J. D. (2012). Fuzzy Portfolio Selection Models: A Numerical Study. Financial Decision Making Using Computational Intelligence, 253-280. doi:10.1007/978-1-4614-3773-4_10Vercher, E., & Bermudez, J. D. (2013). A Possibilistic Mean-Downside Risk-Skewness Model for Efficient Portfolio Selection. IEEE Transactions on Fuzzy Systems, 21(3), 585-595. doi:10.1109/tfuzz.2012.2227487Vercher, E., & BermĂșdez, J. D. (2015). Portfolio optimization using a credibility mean-absolute semi-deviation model. Expert Systems with Applications, 42(20), 7121-7131. doi:10.1016/j.eswa.2015.05.020Vercher, E., BermĂșdez, J. D., & Segura, J. V. (2007). Fuzzy portfolio optimization under downside risk measures. Fuzzy Sets and Systems, 158(7), 769-782. doi:10.1016/j.fss.2006.10.026Wang, S., & Zhu, S. (2002). Fuzzy Optimization and Decision Making, 1(4), 361-377. doi:10.1023/a:1020907229361Yue, W., & Wang, Y. (2017). A new fuzzy multi-objective higher order moment portfolio selection model for diversified portfolios. Physica A: Statistical Mechanics and its Applications, 465, 124-140. doi:10.1016/j.physa.2016.08.009Yue, W., Wang, Y., & Xuan, H. (2018). Fuzzy multi-objective portfolio model based on semi-variance–semi-absolute deviation risk measures. Soft Computing, 23(17), 8159-8179. doi:10.1007/s00500-018-3452-yZadeh, L. A. (1965). Fuzzy sets. Information and Control, 8(3), 338-353. doi:10.1016/s0019-9958(65)90241-xZhai, J., & Bai, M. (2018). Mean-risk model for uncertain portfolio selection with background risk. Journal of Computational and Applied Mathematics, 330, 59-69. doi:10.1016/j.cam.2017.07.038Zhao, Z., Wang, H., Yang, X., & Xu, F. (2020). CVaR-cardinality enhanced indexation optimization with tunable short-selling constraints. Applied Economics Letters, 28(3), 201-207. doi:10.1080/13504851.2020.174015

    A comparison of the Normal and Laplace distributions in the models of fuzzy probability distribution for portfolio selection

    Get PDF
    The propose of this work is applied the fuzzy Laplace distribution on a possibilistic mean-variance model presented by Li et al which appliehe fuzzy normal distribution. The theorem necessary to introduce the Laplace distribution in the model was demonstrated. It was made an analysis of the behavior of the fuzzy normal and fuzzy Laplace distributions on the portfolio selection with VaR constraint and risk-free investment considering real data. The results showns that were not difference in assets selection and in return rate, however, There was a change in the risk rate, which was higher in the Laplace distribution than in the normal distribution

    Multi-period Project Portfolio Selection under Risk considerations and Stochastic Income

    Get PDF
    This paper deals with multi-period project portfolio selection problem. In this problem, the available budget is invested on the best portfolio of projects in each period such that the net profit is maximized. We also consider more realistic assumptions to cover wider range of applications than those reported in previous studies. A novel mathematical model is presented to solve the problem, considering risks, stochastic incomes, and possibility of investing extra budget in each time period. Due to the complexity of the problem, an effective meta-heuristic method hybridized with a local search procedure is presented to solve the problem. The algorithm is based on genetic algorithm (GA), which is a prominent method to solve this type of problems. The GA is enhanced by a new solution representation and well selected operators. It also is hybridized with a local search mechanism to gain better solution in shorter time. The performance of the proposed algorithm is then compared with well-known algorithms, like basic genetic algorithm (GA), particle swarm optimization (PSO), and electromagnetism-like algorithm (EM-like) by means of some prominent indicators. The computation results show the superiority of the proposed algorithm in terms of accuracy, robustness and computation time. At last, the proposed algorithm is wisely combined with PSO to improve the computing time considerably

    A methodology for the selection of new technologies in the aviation industry

    Get PDF
    The purpose of this report is to present a technology selection methodology to quantify both tangible and intangible benefits of certain technology alternatives within a fuzzy environment. Specifically, it describes an application of the theory of fuzzy sets to hierarchical structural analysis and economic evaluations for utilisation in the industry. The report proposes a complete methodology to accurately select new technologies. A computer based prototype model has been developed to handle the more complex fuzzy calculations. Decision-makers are only required to express their opinions on comparative importance of various factors in linguistic terms rather than exact numerical values. These linguistic variable scales, such as ‘very high’, ‘high’, ‘medium’, ‘low’ and ‘very low’, are then converted into fuzzy numbers, since it becomes more meaningful to quantify a subjective measurement into a range rather than in an exact value. By aggregating the hierarchy, the preferential weight of each alternative technology is found, which is called fuzzy appropriate index. The fuzzy appropriate indices of different technologies are then ranked and preferential ranking orders of technologies are found. From the economic evaluation perspective, a fuzzy cash flow analysis is employed. This deals quantitatively with imprecision or uncertainties, as the cash flows are modelled as triangular fuzzy numbers which represent ‘the most likely possible value’, ‘the most pessimistic value’ and ‘the most optimistic value’. By using this methodology, the ambiguities involved in the assessment data can be effectively represented and processed to assure a more convincing and effective decision- making process when selecting new technologies in which to invest. The prototype model was validated with a case study within the aviation industry that ensured it was properly configured to meet the

    Risk-based methods for sustainable energy system planning: a review

    Get PDF
    The value of investments in renewable energy (RE) technologies has increased rapidly over the last decade as a result of political pressures to reduce carbon dioxide emissions and the policy incentives to increase the share of RE in the energy mix. As the number of RE investments increases, so does the need to measure the associated risks throughout planning, constructing and operating these technologies. This paper provides a state-of-the-art literature review of the quantitative and semi-quantitative methods that have been used to model risks and uncertainties in sustainable energy system planning and feasibility studies, including the derivation of optimal energy technology portfolios. The review finds that in quantitative methods, risks are mainly measured by means of the variance or probability density distributions of technical and economical parameters; while semi-quantitative methods such as scenario analysis and multi-criteria decision analysis (MCDA) can also address non-statistical parameters such as socio-economic factors (e.g. macro-economic trends, lack of public acceptance). Finally, untapped issues recognised in recent research approaches are discussed along with suggestions for future research
    • 

    corecore