20,715 research outputs found

    Implementation of Impulse Noise Reduction Method to Color Images using Fuzzy Logic

    Get PDF
    Image Processing is a technique to enhance raw images received from cameras/sensors placed on satellites, space probes and aircrafts or pictures taken in normal day-to-day life for various applications. Impulse noise reduction method is one of the critical techniques to reduce the noise in color images. In this paper the impulse noise reduction method for color images by using Fuzzy Logic is implemented. Generally Grayscale algorithm is used to filter the impulse noise in corrupted color images by separate the each color component or using a vector-based approach where each pixel is considered as a single vector. In this paper the concepts of Fuzzy logic has been used in order to distinguish between noise and image characters and filter only the corrupted pixels while preserving the color and the edge sharpness. Due to this a good noise reduction performance is achieved. The main difference between this method and other classical noise reduction methods is that the color information is taken into account to develop a better impulse noise detection a noise reduction that filters only the corrupted pixels while preserving the color and the edge sharpness. The Fuzzy based impulse noise reduction method is implemented on set of selected images and the obtained results are presented

    A simple fuzzy method to remove mixed Gaussian-Impulsive noise from color images

    Full text link
    © 2013 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Mixed impulsive and Gaussian noise reduction from digital color images is a challenging task because it is necessary to appropriately process both types of noise that in turn need to be distinguished from the original image structures such as edges and details. Fuzzy theory is useful to build simple, efficient, and effective solutions for this problem. In this paper, we propose a fuzzy method to reduce Gaussian and impulsive noise from color images. Our method uses one only filtering operation: a weighted averaging. A fuzzy rule system is used to assign the weights in the averaging so that both noise types are reduced and image structures are reserved. We provide experimental results to show that the performance of the method is competitive with respect to state-of-the-art filters.This work was supported by the Spanish Ministry of Science and Innovation under Grant MTM2009-12872-C02-01.Camarena Estruch, JG.; Gregori Gregori, V.; Morillas, S.; Sapena Piera, A. (2013). A simple fuzzy method to remove mixed Gaussian-Impulsive noise from color images. IEEE Transactions on Fuzzy Systems. 21(5):971-978. https://doi.org/10.1109/TFUZZ.2012.2234754S97197821

    Colour image denoising by eigenvector analysis of neighbourhood colour samples

    Get PDF
    [EN] Colour image smoothing is a challenging task because it is necessary to appropriately distinguish between noise and original structures, and to smooth noise conveniently. In addition, this processing must take into account the correlation among the image colour channels. In this paper, we introduce a novel colour image denoising method where each image pixel is processed according to an eigenvector analysis of a data matrix built from the pixel neighbourhood colour values. The aim of this eigenvector analysis is threefold: (i) to manage the local correlation among the colour image channels, (ii) to distinguish between flat and edge/textured regions and (iii) to determine the amount of needed smoothing. Comparisons with classical and recent methods show that the proposed approach is competitive and able to provide significative improvements.Latorre-Carmona, P.; Miñana, J.; Morillas, S. (2020). Colour image denoising by eigenvector analysis of neighbourhood colour samples. Signal Image and Video Processing. 14(3):483-490. https://doi.org/10.1007/s11760-019-01575-5S483490143Plataniotis, K.N., Venetsanopoulos, A.N.: Color Image Processing and Applications. Springer, Berlin (2000)Lukac, R., Smolka, B., Martin, K., Plataniotis, K.N., Venetsanopoulos, A.N.: Vector Filtering for Color Imaging. IEEE Signal Processing Magazine, Special Issue on Color Image Processing 22, 74–86 (2005)Lukac, R., Plataniotis, K.N.: A taxonomy of color image filtering and enhancement solutions. In: Hawkes, P.W. (ed.) Advances in Imaging and Electron Physics, vol. 140, pp. 187–264. Elsevier Acedemic Press, Amsterdam (2006)Buades, A., Coll, B., Morel, J.M.: Nonlocal image and movie denoising. Int. J. Comput. Vis. 76, 123–139 (2008)Tomasi, C., Manduchi, R.: Bilateral filter for gray and color images. In: Proceedings of IEEE International Conference Computer Vision, pp. 839–846 (1998)Elad, M.: On the origin of bilateral filter and ways to improve it. IEEE Trans. Image Process. 11, 1141–1151 (2002)Kao, W.C., Chen, Y.J.: Multistage bilateral noise filtering and edge detection for color image enhancement. IEEE Trans. Consum. Electron. 51, 1346–1351 (2005)Garnett, R., Huegerich, T., Chui, C., He, W.: A universal noise removal algorithm with an impulse detector. IEEE Trans. Image Process. 14, 1747–1754 (2005)Morillas, S., Gregori, V., Sapena, A.: Fuzzy Bilateral Filtering for color images. Lecture Notes Comput. Sci. 4141, 138–145 (2006)Zhang, B., Allenbach, J.P.: Adaptive bilateral filter for sharpness enhancement and noise removal. IEEE Trans. Image Process. 17, 664–678 (2008)Kenney, C., Deng, Y., Manjunath, B.S., Hewer, G.: Peer group image enhancement. IEEE Trans. Image Process. 10, 326–334 (2001)Morillas, S., Gregori, V., Hervás, A.: Fuzzy peer groups for reducing mixed Gaussian-impulse noise from color images. IEEE Trans. Image Process. 18, 1452–1466 (2009)Plataniotis, K.N., Androutsos, D., Venetsanopoulos, A.N.: Adaptive fuzzy systems for multichannel signal processing. Proc. IEEE 87, 1601–1622 (1999)Schulte, S., De Witte, V., Kerre, E.E.: A fuzzy noise reduction method for colour images. IEEE Trans. Image Process. 16, 1425–1436 (2007)Shen, Y., Barner, K.: Fuzzy vector median-based surface smoothing. IEEE Trans. Vis. Comput. Graph. 10, 252–265 (2004)Lukac, R., Plataniotis, K.N., Smolka, B., Venetsanopoulos, A.N.: cDNA microarray image processing using fuzzy vector filtering framework. Fuzzy Sets Syst. 152, 17–35 (2005)Smolka, B.: On the new robust algorithm of noise reduction in color images. Comput. Graph. 27, 503–513 (2003)Van de Ville, D., Nachtegael, M., Van der Weken, D., Philips, W., Lemahieu, I., Kerre, E.E.: Noise reduction by fuzzy image filtering. IEEE Trans. Fuzzy Syst. 11, 429–436 (2003)Schulte, S., De Witte, V., Nachtegael, M., Van der Weken, D., Kerre, E.E.: Histogram-based fuzzy colour filter for image restoration. Image Vis. Comput. 25, 1377–1390 (2007)Nachtegael, M., Schulte, S., Van der Weken, D., De Witte, V., Kerre, E.E.: Gaussian noise reduction in grayscale images. Int. J. Intell. Syst. Technol. Appl. 1, 211–233 (2006)Schulte, S., De Witte, V., Nachtegael, M., Mélange, T., Kerre, E.E.: A new fuzzy additive noise reduction method. Lecture Notes Comput. Sci. 4633, 12–23 (2007)Morillas, S., Schulte, S., Mélange, T., Kerre, E.E., Gregori, V.: A soft-switching approach to improve visual quality of colour image smoothing filters. In: Proceedings of Advanced Concepts for Intelligent Vision Systems ACIVS07, Lecture Notes in Computer Science, vol. 4678, pp. 254–261 (2007)Lucchese, L., Mitra, S.K.: A new class of chromatic filters for color image processing: theory and applications. IEEE Trans. Image Process. 13, 534–548 (2004)Lee, J.A., Geets, X., Grégoire, V., Bol, A.: Edge-preserving filtering of images with low photon counts. IEEE Trans. Pattern Anal. Mach. Intell. 30, 1014–1027 (2008)Russo, F.: Technique for image denoising based on adaptive piecewise linear filters and automatic parameter tuning. IEEE Trans. Instrum. Meas. 55, 1362–1367 (2006)Shao, M., Barner, K.E.: Optimization of partition-based weighted sum filters and their application to image denoising. IEEE Trans. Image Process. 15, 1900–1915 (2006)Ma, Z., Wu, H.R., Feng, D.: Partition based vector filtering technique for suppression of noise in digital color images. IEEE Trans. Image Process. 15, 2324–2342 (2006)Ma, Z., Wu, H.R., Feng, D.: Fuzzy vector partition filtering technique for color image restoration. Comput. Vis. Image Underst. 107, 26–37 (2007)Perona, P., Malik, J.: Scale-space and edge detection using anisotropic diffusion. IEEE Trans. Pattern Anal. Mach. Intell. 12, 629–639 (1990)Sroubek, F., Flusser, J.: Multichannel blind iterative image restoration. IEEE Trans. Image Process. 12, 1094–1106 (2003)Hu, J., Wang, Y., Shen, Y.: Noise reduction and edge detection via kernel anisotropic diffusion. Pattern Recognit. Lett. 29, 1496–1503 (2008)Li, X.: On modeling interchannel dependency for color image denoising. Int. J. Imaging Syst. Technol., Special issue on applied color image processing 17, 163–173 (2007)Keren, D., Gotlib, A.: Denoising color images using regularization and correlation terms. J. Vis. Commun. Image Represent. 9, 352–365 (1998)Lezoray, O., Elmoataz, A., Bougleux, S.: Graph regularization for color image processing. Comput. Vis. Image Underst. 107, 38–55 (2007)Elmoataz, A., Lezoray, O., Bougleux, S.: Nonlocal discrete regularization on weighted graphs: a framework for image and manifold processing. IEEE Trans. Image Process. 17, 1047–1060 (2008)Blomgren, P., Chan, T.: Color TV: total variation methods for restoration of vector-valued images. IEEE Trans. Image Process. 7, 304–309 (1998)Tschumperlé, D., Deriche, R.: Vector-valued image regularization with PDEs: a common framework from different applications. IEEE Trans. Pattern Anal. Mach. Intell. 27, 506–517 (2005)Plonka, G., Ma, J.: Nonlinear regularized reaction-diffusion filters for denoising of images with textures. IEEE Trans. Image Process. 17, 1283–1294 (2007)Melange, T., Zlokolica, V., Schulte, S., De Witte, V., Nachtegael, M., Pizurca, A., Kerre, E.E., Philips, W.: A new fuzzy motion and detail adaptive video filter. Lecture Notes Comput. Sci. 4678, 640–651 (2007)De Backer, S., Pizurica, A., Huysmans, B., Philips, W., Scheunders, P.: Denoising of multicomponent images using wavelet least-squares estimators. Image Vis. Comput. 26, 1038–1051 (2008)Dengwen, Z., Wengang, C.: Image denoising with an optimal threshold and neighboring window. Pattern Recognit. Lett. 29, 1694–1697 (2008)Schulte, S., Huysmans, B., Pizurica, A., Kerre, E.E., Philips, W.: A new fuzzy-based wavelet shrinkage image denoising technique. In: Proceedings of Advanced Concepts for Intelligent Vision Systems ACIVS06, Lecture Notes in Computer Science, vol. 4179, pp. 12–23 (2006)Pizurica, A., Philips, W.: Estimating the probability of the presence of a signal of interest in multiresolution single and multiband image denoising. IEEE Trans. Image Process. 15, 654–665 (2006)Scheunders, P.: Wavelet thresholding of multivalued images. IEEE Trans. Image Process. 13, 475–483 (2004)Sendur, L., Selesnick, I.W.: Bivariate shrinkage functions for wavelet-based denoising exploiting interscale dependency. IEEE Trans. Signal Process. 50, 2744–2756 (2002)Balster, E.J., Zheng, Y.F., Ewing, R.L.: Feature-based wavelet shrinkage algorithm for image denoising. IEEE Trans. Image Process. 14, 2024–2039 (2005)Miller, M., Kingsbury, N.: Image denoising using derotated complex wavelet coefficients. IEEE Trans. Image Process. 17, 1500–1511 (2008)Zhang, B., Fadili, J.M., Starck, J.L.: Wavelets, ridgelets, and curvelets for poisson noise removal. IEEE Trans. Image Process. 17, 1093–1108 (2008)Dabov, K., Foi, A., Katkovnik, V., Egiazarian, K.: Image denoising by sparse 3D transform-domain collaborative filtering. IEEE Trans. Image Process. 16, 2080–2095 (2007)Dabov, K., Foi, A., Katkovnik, V., Egiazarian, K.: Color image denoising via sparse 3D collaborative filtering with grouping constraint in luminance-chrominance space. In: Proceedings of the IEEE International Conference on Image Processing ICIP2007 , pp. 313–316 (2007)Hao, B.B., Li, M., Feng, X.C.: Wavelet iterative regularization for image restoration with varying scale parameter. Signal Process. Image Commun. 23, 433–441 (2008)Zhao, W., Pope, A.: Image restoration under significat additive noise. IEEE Signal Process. Lett. 14, 401–404 (2007)Gijbels, I., Lambert, A., Qiu, P.: Edge-preserving image denoising and estimation of discontinuous surfaces. IEEE Trans. Pattern Anal. Mach. Intell. 28, 1075–1087 (2006)Liu, C., Szeliski, R., Kang, S.B., Zitnik, C.L., Freeman, W.T.: Automatic estimation and removal of noise from a single image. IEEE Trans. Pattern Anal. Mach. Intell. 30, 299–314 (2008)Oja, E.: Principal components, minor components, and linear neural networks. Neural Netw. 5, 927–935 (1992)Takahashi, T.: Kurita, T.: Robust de-noising by kernel PCA. In: Proceedings of ICANN2002, Lecture Notes in Computer Science, vol. 2145, pp. 739–744 (2002)Park, H., Moon, Y.S.: Automatic denoising of 2D color face images using recursive PCA reconstruction. In: Proceedings of Advanced Concepts for Intelligent Vision Systems ACIVS06, Lecture Notes in Computer Science, vol. 4179, pp. 799–809 (2006)Teixeira, A.R., Tomé, A.M., Stadlthanner, K., Lang, E.W.: KPCA denoising and the pre-image problem revisited. Digital Signal Process. 18, 568–580 (2008)Astola, J., Haavisto, P., Neuvo, Y.: Vector median filters. Proc. IEEE 78, 678–689 (1990)Morillas, S., Gregori, V., Sapena, A.: Adaptive marginal median filter for colour images. Sensors 11, 3205–3213 (2011)Morillas, S., Gregori, V.: Robustifying vector median filter. Sensors 11, 8115–8126 (2011)Dillon, W.R., Goldstein, M.: Multivariate Analysis: Methods and Applications. Wiley, Hoboken (1984)Jackson, J.E.: A User’s Guide to Principal Components. Wiley, Hoboken (2003)Camacho, J., Picó, J.: Multi-phase principal component analysis for batch processes modelling. Chemom. Intell. Lab. Syst. 81, 127–136 (2006)Nomikos, P., MacGregor, J.: Multivariate SPC charts for monitoring batch processes. Technometrics 37, 41–59 (1995)Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)Grecova, Svetlana, Morillas, Samuel: Perceptual similarity between color images using fuzzy metrics. J. Vis. Commun. Image Represent. 34, 230–235 (2016)Fairchild, M.D., Johnson, G.M.: iCAM framework for image appearance differences and quality. J. Electron. Imaging 13(1), 126–138 (2004)Immerkaer, J.: Fast noise variance estimation. Comput. Vis. Image Underst. 64, 300–302 (1996

    Distance Measures for Reduced Ordering Based Vector Filters

    Full text link
    Reduced ordering based vector filters have proved successful in removing long-tailed noise from color images while preserving edges and fine image details. These filters commonly utilize variants of the Minkowski distance to order the color vectors with the aim of distinguishing between noisy and noise-free vectors. In this paper, we review various alternative distance measures and evaluate their performance on a large and diverse set of images using several effectiveness and efficiency criteria. The results demonstrate that there are in fact strong alternatives to the popular Minkowski metrics

    Gray Image extraction using Fuzzy Logic

    Full text link
    Fuzzy systems concern fundamental methodology to represent and process uncertainty and imprecision in the linguistic information. The fuzzy systems that use fuzzy rules to represent the domain knowledge of the problem are known as Fuzzy Rule Base Systems (FRBS). On the other hand image segmentation and subsequent extraction from a noise-affected background, with the help of various soft computing methods, are relatively new and quite popular due to various reasons. These methods include various Artificial Neural Network (ANN) models (primarily supervised in nature), Genetic Algorithm (GA) based techniques, intensity histogram based methods etc. providing an extraction solution working in unsupervised mode happens to be even more interesting problem. Literature suggests that effort in this respect appears to be quite rudimentary. In the present article, we propose a fuzzy rule guided novel technique that is functional devoid of any external intervention during execution. Experimental results suggest that this approach is an efficient one in comparison to different other techniques extensively addressed in literature. In order to justify the supremacy of performance of our proposed technique in respect of its competitors, we take recourse to effective metrics like Mean Squared Error (MSE), Mean Absolute Error (MAE), Peak Signal to Noise Ratio (PSNR).Comment: 8 pages, 5 figures, Fuzzy Rule Base, Image Extraction, Fuzzy Inference System (FIS), Membership Functions, Membership values,Image coding and Processing, Soft Computing, Computer Vision Accepted and published in IEEE. arXiv admin note: text overlap with arXiv:1206.363
    • …
    corecore