15,758 research outputs found

    An Overview of Classifier Fusion Methods

    Get PDF
    A number of classifier fusion methods have been recently developed opening an alternative approach leading to a potential improvement in the classification performance. As there is little theory of information fusion itself, currently we are faced with different methods designed for different problems and producing different results. This paper gives an overview of classifier fusion methods and attempts to identify new trends that may dominate this area of research in future. A taxonomy of fusion methods trying to bring some order into the existing “pudding of diversities” is also provided

    An Overview of Classifier Fusion Methods

    Get PDF
    A number of classifier fusion methods have been recently developed opening an alternative approach leading to a potential improvement in the classification performance. As there is little theory of information fusion itself, currently we are faced with different methods designed for different problems and producing different results. This paper gives an overview of classifier fusion methods and attempts to identify new trends that may dominate this area of research in future. A taxonomy of fusion methods trying to bring some order into the existing “pudding of diversities” is also provided

    Fuzzy Integral Based Multi-Sensor Fusion for Arc Detection in the Pantograph-Catenary System

    Get PDF
    The pantograph-catenary subsystem is a fundamental component of a railway train since it provides the traction electrical power. A bad operating condition or, even worse, a failure can disrupt the railway traffic creating economic damages and, in some cases, serious accidents. Therefore, the correct operation of such subsystems should be ensured in order to have an economically efficient, reliable and safe transportation system. In this study, a new arc detection method was proposed and is based on features from the current and voltage signals collected by the pantograph. A tool named mathematical morphology is applied to voltage and current signals to emphasize the effect of the arc, before applying the fast Fourier transform to obtain the power spectrum. Afterwards, three support vector machine-based classifiers are trained separately to detect the arcs, and a fuzzy integral technique is used to synthesize the results obtained by the individual classifiers, therefore implementing a classifier fusion technique. The experimental results show that the proposed approach is effective for the detection of arcs, and the fusion of classifier has a higher detection accuracy than any individual classifier

    Land cover classification using fuzzy rules and aggregation of contextual information through evidence theory

    Full text link
    Land cover classification using multispectral satellite image is a very challenging task with numerous practical applications. We propose a multi-stage classifier that involves fuzzy rule extraction from the training data and then generation of a possibilistic label vector for each pixel using the fuzzy rule base. To exploit the spatial correlation of land cover types we propose four different information aggregation methods which use the possibilistic class label of a pixel and those of its eight spatial neighbors for making the final classification decision. Three of the aggregation methods use Dempster-Shafer theory of evidence while the remaining one is modeled after the fuzzy k-NN rule. The proposed methods are tested with two benchmark seven channel satellite images and the results are found to be quite satisfactory. They are also compared with a Markov random field (MRF) model-based contextual classification method and found to perform consistently better.Comment: 14 pages, 2 figure

    Using Non-Additive Measure for Optimization-Based Nonlinear Classification

    Get PDF
    Over the past few decades, numerous optimization-based methods have been proposed for solving the classification problem in data mining. Classic optimization-based methods do not consider attribute interactions toward classification. Thus, a novel learning machine is needed to provide a better understanding on the nature of classification when the interaction among contributions from various attributes cannot be ignored. The interactions can be described by a non-additive measure while the Choquet integral can serve as the mathematical tool to aggregate the values of attributes and the corresponding values of a non-additive measure. As a main part of this research, a new nonlinear classification method with non-additive measures is proposed. Experimental results show that applying non-additive measures on the classic optimization-based models improves the classification robustness and accuracy compared with some popular classification methods. In addition, motivated by well-known Support Vector Machine approach, we transform the primal optimization-based nonlinear classification model with the signed non-additive measure into its dual form by applying Lagrangian optimization theory and Wolfes dual programming theory. As a result, 2 – 1 parameters of the signed non-additive measure can now be approximated with m (number of records) Lagrangian multipliers by applying necessary conditions of the primal classification problem to be optimal. This method of parameter approximation is a breakthrough for solving a non-additive measure practically when there are a relatively small number of training cases available (). Furthermore, the kernel-based learning method engages the nonlinear classifiers to achieve better classification accuracy. The research produces practically deliverable nonlinear models with the non-additive measure for classification problem in data mining when interactions among attributes are considered
    • …
    corecore