79 research outputs found

    Fuzzy decision-making fuser (FDMF) for integrating human-machine autonomous (HMA) systems with adaptive evidence sources

    Full text link
    Β© 2017 Liu, Pal, Marathe, Wang and Lin. A brain-computer interface (BCI) creates a direct communication pathway between the human brain and an external device or system. In contrast to patient-oriented BCIs, which are intended to restore inoperative or malfunctioning aspects of the nervous system, a growing number of BCI studies focus on designing auxiliary systems that are intended for everyday use. The goal of building these BCIs is to provide capabilities that augment existing intact physical and mental capabilities. However, a key challenge to BCI research is human variability; factors such as fatigue, inattention, and stress vary both across different individuals and for the same individual over time. If these issues are addressed, autonomous systems may provide additional benefits that enhance system performance and prevent problems introduced by individual human variability. This study proposes a human-machine autonomous (HMA) system that simultaneously aggregates human and machine knowledge to recognize targets in a rapid serial visual presentation (RSVP) task. The HMA focuses on integrating an RSVP BCI with computer vision techniques in an image-labeling domain. A fuzzy decision-making fuser (FDMF) is then applied in the HMA system to provide a natural adaptive framework for evidence-based inference by incorporating an integrated summary of the available evidence (i.e., human and machine decisions) and associated uncertainty. Consequently, the HMA system dynamically aggregates decisions involving uncertainties from both human and autonomous agents. The collaborative decisions made by an HMA system can achieve and maintain superior performance more efficiently than either the human or autonomous agents can achieve independently. The experimental results shown in this study suggest that the proposed HMA system with the FDMF can effectively fuse decisions from human brain activities and the computer vision techniques to improve overall performance on the RSVP recognition task. This conclusion demonstrates the potential benefits of integrating autonomous systems with BCI systems

    Fuzzy Integral Driven Ensemble Classification using A Priori Fuzzy Measures

    Get PDF
    Aggregation operators are mathematical functions that enable the fusion of information from multiple sources. Fuzzy Integrals (FIs) are widely used aggregation operators, which combine information in respect to a Fuzzy Measure (FM) which captures the worth of both the individual sources and all their possible combinations. However, FIs suffer from the potential drawback of not fusing information according to the intuitively interpretable FM, leading to non-intuitive results. The latter is particularly relevant when a FM has been defined using external information (e.g. experts). In order to address this and provide an alternative to the FI, the Recursive Average (RAV) aggregation operator was recently proposed which enables intuitive data fusion in respect to a given FM. With an alternative fusion operator in place, in this paper, we define the concept of β€˜A Priori’ FMs which are generated based on external information (e.g. classification accuracy) and thus provide an alternative to the traditional approaches of learning or manually specifying FMs. We proceed to develop one specific instance of such an a priori FM to support the decision level fusion step in ensemble classification. We evaluate the resulting approach by contrasting the performance of the ensemble classifiers for different FMs, including the recently introduced Uriz and the Sugeno lambda-measure; as well as by employing both the Choquet FI and the RAV as possible fusion operators. Results are presented for 20 datasets from machine learning repositories and contextualised to the wider literature by comparing them to state-of-the-art ensemble classifiers such as Adaboost, Bagging, Random Forest and Majority Voting

    Bispectrum-Based Channel Selection for Motor Imagery Based Brain-Computer Interfacing.

    Get PDF
    The performance of motor imagery (MI) based Brain-computer interfacing (BCI) is easily affected by noise and redundant information that exists in the multi-channel electroencephalogram (EEG). To solve this problem, many temporal and spatial feature based channel selection methods have been proposed. However, temporal and spatial features do not accurately reflect changes in the power of the oscillatory EEG. Thus, spectral features of MI-related EEG signals may be useful for channel selection. Bispectrum analysis is a technique developed for extracting non-linear and non-Gaussian information from non-linear and non-Gaussian signals. The features extracted from bispectrum analysis can provide frequency domain information about the EEG. Therefore, in this study, we propose a bispectrum-based channel selection (BCS) method for MI-based BCI. The proposed method uses the sum of logarithmic amplitudes (SLA) and the first order spectral moment (FOSM) features extracted from bispectrum analysis to select EEG channels without redundant information. Three public BCI competition datasets (BCI competition IV dataset 1, BCI competition III dataset IVa and BCI competition III dataset IIIa) were used to validate the effectiveness of our proposed method. The results indicate that our BCS method outperforms use of all channels (83.8% vs 69.4%, 86.3% vs 82.9% and 77.8% vs 68.2%, respectively). Furthermore, compared to the other state-of-the-art methods, our BCS method also can achieve significantly better classification accuracies for MI-based BCI (Wilcoxon signed test, p < 0.05)

    A Self-Adaptive Online Brain Machine Interface of a Humanoid Robot through a General Type-2 Fuzzy Inference System

    Get PDF
    This paper presents a self-adaptive general type-2 fuzzy inference system (GT2 FIS) for online motor imagery (MI) decoding to build a brain-machine interface (BMI) and navigate a bi-pedal humanoid robot in a real experiment, using EEG brain recordings only. GT2 FISs are applied to BMI for the first time in this study. We also account for several constraints commonly associated with BMI in real practice: 1) maximum number of electroencephalography (EEG) channels is limited and fixed, 2) no possibility of performing repeated user training sessions, and 3) desirable use of unsupervised and low complexity features extraction methods. The novel learning method presented in this paper consists of a self-adaptive GT2 FIS that can both incrementally update its parameters and evolve (a.k.a. self-adapt) its structure via creation, fusion and scaling of the fuzzy system rules in an online BMI experiment with a real robot. The structure identification is based on an online GT2 Gath-Geva algorithm where every MI decoding class can be represented by multiple fuzzy rules (models). The effectiveness of the proposed method is demonstrated in a detailed BMI experiment where 15 untrained users were able to accurately interface with a humanoid robot, in a single thirty-minute experiment, using signals from six EEG electrodes only

    Evaluating Steady-State Visually Evoked Potentials-Based Brain-Computer Interface System Using Wavelet Features and Various Machine Learning Methods

    Get PDF
    Steady-state visual evoked potentials (SSVEPs) have been designated to be appropriate and are in use in many areas such as clinical neuroscience, cognitive science, and engineering. SSVEPs have become popular recently, due to their advantages including high bit rate, simple system structure and short training time. To design SSVEP-based BCI system, signal processing methods appropriate to the signal structure should be applied. One of the most appropriate signal processing methods of these non-stationary signals is the Wavelet Transform. In this study, we investigated both the effect of choosing a mother wavelet function and the most successful combination of classifier algorithm, wavelet features, and frequency pairs assigned to BCI commands. SSVEP signals that were recorded at seven different stimulus frequencies (6–6.5 – 7 – 7.5 – 8.2 – 9.3 – 10Β Hz) were used in this study. A total of 115 features were extracted from time, frequency, and time-frequency domains. These features were classified by a total of seven different classification processes. Classification evaluation was presented with the 5-fold cross-validation method and accuracy values. According to the results, (I) the most successful wavelet function was Haar wavelet, (II) the most successful classifier was Ensemble Learning, (III) using the feature vector consisting of energy, entropy, and variance features yielded higher accuracy than using one of these features alone, and (IV) the highest performances were obtained in the frequency pairs with β€œ6–10”, β€œ6.5–10”, β€œ7–10”, and β€œ7.5–10” Hz

    Improving classification of error related potentials using novel feature extraction and classification algorithms for an assistive robotic device

    Get PDF
    We evaluated the proposed feature extraction algorithm and the classifier, and we showed that the performance surpassed the state of the art algorithms in error detection. Advances in technology are required to improve the quality of life of a person with a severe disability who has lost their independence of movement in their daily life. Brain-computer interface (BCI) is a possible technology to re-establish a sense of independence for the person with a severe disability through direct communication between the brain and an electronic device. To enhance the symbiotic interface between the person and BCI its accuracy and robustness should be improved across all age groups. This thesis aims to address the above-mentioned issue by developing a novel feature extraction algorithm and a novel classification algorithm for the detection of erroneous actions made by either human or BCI. The research approach evaluated the state of the art error detection classifier using data from two different age groups, young and elderly. The performance showed a statistical difference between the aforementioned age groups; therefore, there needs to be an improvement in error detection and classification. The results showed that my proposed relative peak feature (RPF) and adaptive decision surface (ADS) classifier outperformed the state of the art algorithms in detecting errors using EEG for both elderly and young groups. In addition, the novel classification algorithm has been applied to motor imagery to improve the detection of when a person imagines moving a limb. Finally, this thesis takes a brief look at object recognition for a shared control task of identifying utensils in cooperation with a prosthetic robotic hand

    Brain-Computer Interface

    Get PDF
    Brain-computer interfacing (BCI) with the use of advanced artificial intelligence identification is a rapidly growing new technology that allows a silently commanding brain to manipulate devices ranging from smartphones to advanced articulated robotic arms when physical control is not possible. BCI can be viewed as a collaboration between the brain and a device via the direct passage of electrical signals from neurons to an external system. The book provides a comprehensive summary of conventional and novel methods for processing brain signals. The chapters cover a range of topics including noninvasive and invasive signal acquisition, signal processing methods, deep learning approaches, and implementation of BCI in experimental problems
    • …
    corecore