4,554 research outputs found

    Situational Intelligence for Improving Power System Operations Under High Penetration of Photovoltaics

    Get PDF
    Nowadays, power grid operators are experiencing challenges and pressures to balance the interconnected grid frequency with rapidly increasing photovoltaic (PV) power penetration levels. PV sources are variable and intermittent. To mitigate the effect of this intermittency, power system frequency is regulated towards its security limits. Under aforementioned stressed regimes, frequency oscillations are inevitable, especially during disturbances and may lead to costly consequences as brownout or blackout. Hence, the power system operations need to be improved to make the appropriate decision in time. Specifically, concurrent or beforehand power system precise frequencies simplified straightforward-to-comprehend power system visualizations and cooperated well-performed automatic generation controls (AGC) for multiple areas are needed for operation centers to enhance. The first study in this dissertation focuses on developing frequency prediction general structures for PV and phasor measurement units integrated electric grids to improve the situational awareness (SA) of the power system operation center in making normal and emergency decisions ahead of time. Thus, in this dissertation, a frequency situational intelligence (FSI) methodology capable of multi-bus type and multi-timescale prediction is presented based on the cellular computational network (CCN) structure with a multi-layer proception (MLP) and a generalized neuron (GN) algorithms. The results present that both CCMLPN and CCGNN can provide precise multi-timescale frequency predictions. Moreover, the CCGNN has a superior performance than the CCMLPN. The second study of this dissertation is to improve the SA of the operation centers by developing the online visualization tool based on the synchronous generator vulnerability index (GVI) and the corresponding power system vulnerability index (SVI) considering dynamic PV penetration. The GVI and SVI are developed by the coherency grouping results of synchronous generator using K-Harmonic Means Clustering (KHMC) algorithm. Furthermore, the CCGNN based FSI method has been implemented for the online coherency grouping procedure to achieve a faster-than-real-time grouping performance. Last but not the least, the multi-area AGCs under different PV integrated power system operating conditions are investigated on the multi-area multi-source interconnected testbed, especially with severe load disturbances. Furthermore, an onward asynchronous tuning method and a two-step (synchronous) tuning method utilizing particle swarm optimization algorithm are developed to refine the multi-area AGCs, which provide more opportunities for power system balancing authorities to interconnect freely and to utilize more PV power. In summary, a number of methods for improving the interconnected power system situational intelligence for a high level of PV power penetration have been presented in this dissertation

    Clustering objectives in wireless sensor networks: A survey and research direction analysis

    Get PDF
    Wireless Sensor Networks (WSNs) typically include thousands of resource-constrained sensors to monitor their surroundings, collect data, and transfer it to remote servers for further processing. Although WSNs are considered highly flexible ad-hoc networks, network management has been a fundamental challenge in these types of net- works given the deployment size and the associated quality concerns such as resource management, scalability, and reliability. Topology management is considered a viable technique to address these concerns. Clustering is the most well-known topology management method in WSNs, grouping nodes to manage them and/or executing various tasks in a distributed manner, such as resource management. Although clustering techniques are mainly known to improve energy consumption, there are various quality-driven objectives that can be realized through clustering. In this paper, we review comprehensively existing WSN clustering techniques, their objectives and the network properties supported by those techniques. After refining more than 500 clustering techniques, we extract about 215 of them as the most important ones, which we further review, catergorize and classify based on clustering objectives and also the network properties such as mobility and heterogeneity. In addition, statistics are provided based on the chosen metrics, providing highly useful insights into the design of clustering techniques in WSNs.publishedVersio

    An Enhanced Model for Job Sequencing and Dispatch in Identical Parallel Machines

    Get PDF
    This paper has developed an efficient scheduling model that is robust and minimizes the total completion time for job completion in identical parallel machines. The new model employs Genetic-Fuzzy technique for job sequencing and dispatch in identical parallel machines. It uses genetic algorithm technique to develop a job scheduler that does the job sequencing and optimization while fuzzy logic technique was used to develop a job dispatcher that dispatches job to the identical parallel machines. The methodology used for the design is the Object Oriented Analysis and Design Methodology (OOADM) and the system was implemented using C# and .NET framework. The model was tested with fifteen identical parallel machines used for printing. The parameters used in analyzing this model include the job scheduling length, average execution time, load balancing and machines utilization. The result generated from the developed model was compare with the result of other job scheduling models like First Come First Sever (FCFS) scheduling approach and Genetic Model (GA) scheduling approach. The result of the new model shows a better load balancing and high machine utilization among the individual machines when compared with the First Come First Serve (FCFS) scheduling model and Genetic Algorithm (GA) scheduling model. Keywords:  Parallel Machines, Genetic Model, Job Scheduler, Fuzzy Logic Technique, Load Balancing, Machines   Utilization DOI: 10.7176/CEIS/11-2-05 Publication date: March 31st 202

    On improving the performance of optimistic distributed simulations

    No full text
    This report investigates means of improving the performance of optimistic distributed simulations without affecting the simulation accuracy. We argue that existing clustering algorithms are not adequate for application in distributed simulations, and outline some characteristics of an ideal algorithm that could be applied in this field. This report is structured as follows. We start by introducing the area of distributed simulation. Following a comparison of the dominant protocols used in distributed simulation, we elaborate on the current approaches of improving the simulation performance, using computation efficient techniques, exploiting the hardware configuration of processors, optimizations that can be derived from the simulation scenario, etc. We introduce the core characteristics of clustering approaches and argue that these cannot be applied in real-life distributed simulation problems. We present a typical distributed simulation setting and elaborate on the reasons that existing clustering approaches are not expected to improve the performance of a distributed simulation. We introduce a prototype distributed simulation platform that has been developed in the scope of this research, focusing on the area of emergency response and specifically building evacuation. We continue by outlining our current work on this issue, and finally, we end this report by outlining next actions which could be made in this field

    A survey of machine learning techniques applied to self organizing cellular networks

    Get PDF
    In this paper, a survey of the literature of the past fifteen years involving Machine Learning (ML) algorithms applied to self organizing cellular networks is performed. In order for future networks to overcome the current limitations and address the issues of current cellular systems, it is clear that more intelligence needs to be deployed, so that a fully autonomous and flexible network can be enabled. This paper focuses on the learning perspective of Self Organizing Networks (SON) solutions and provides, not only an overview of the most common ML techniques encountered in cellular networks, but also manages to classify each paper in terms of its learning solution, while also giving some examples. The authors also classify each paper in terms of its self-organizing use-case and discuss how each proposed solution performed. In addition, a comparison between the most commonly found ML algorithms in terms of certain SON metrics is performed and general guidelines on when to choose each ML algorithm for each SON function are proposed. Lastly, this work also provides future research directions and new paradigms that the use of more robust and intelligent algorithms, together with data gathered by operators, can bring to the cellular networks domain and fully enable the concept of SON in the near future

    Attribute Equilibrium Dominance Reduction Accelerator (DCCAEDR) Based on Distributed Coevolutionary Cloud and Its Application in Medical Records

    Full text link
    © 2013 IEEE. Aimed at the tremendous challenge of attribute reduction for big data mining and knowledge discovery, we propose a new attribute equilibrium dominance reduction accelerator (DCCAEDR) based on the distributed coevolutionary cloud model. First, the framework of N-populations distributed coevolutionary MapReduce model is designed to divide the entire population into N subpopulations, sharing the reward of different subpopulations' solutions under a MapReduce cloud mechanism. Because the adaptive balancing between exploration and exploitation can be achieved in a better way, the reduction performance is guaranteed to be the same as those using the whole independent data set. Second, a novel Nash equilibrium dominance strategy of elitists under the N bounded rationality regions is adopted to assist the subpopulations necessary to attain the stable status of Nash equilibrium dominance. This further enhances the accelerator's robustness against complex noise on big data. Third, the approximation parallelism mechanism based on MapReduce is constructed to implement rule reduction by accelerating the computation of attribute equivalence classes. Consequently, the entire attribute reduction set with the equilibrium dominance solution can be achieved. Extensive simulation results have been used to illustrate the effectiveness and robustness of the proposed DCCAEDR accelerator for attribute reduction on big data. Furthermore, the DCCAEDR is applied to solve attribute reduction for traditional Chinese medical records and to segment cortical surfaces of the neonatal brain 3-D-MRI records, and the DCCAEDR shows the superior competitive results, when compared with the representative algorithms
    • …
    corecore