684 research outputs found

    EOCC-TARA for Software Defined WBAN

    Get PDF
    Wireless Body Area Network (WBAN) is a promising cost-effective technology for the privacy confined military applications and healthcare applications like remote health monitoring, telemedicine, and e-health services. The use of a Software-Defined Network (SDN) approach improves the control and management processes of the complex structured WBANs and also provides higher flexibility and dynamic network structure. To seamless routing performance in SDN-based WBAN, the energy-efficiency problems must be tackled effectively. The main contribution of this paper is to develop a novel Energy Optimized Congestion Control based on Temperature Aware Routing Algorithm (EOCC-TARA) using Enhanced Multi-objective Spider Monkey Optimization (EMSMO) for SDN-based WBAN. This algorithm overcomes the vital challenges, namely energy-efficiency, congestion-free communication, and reducing adverse thermal effects in WBAN routing. First, the proposed EOCC-TARA routing algorithm considers the effects of temperature due to the thermal dissipation of sensor nodes and formulates a strategy to adaptively select the forwarding nodes based on temperature and energy. Then the congestion avoidance concept is added with the energy-efficiency, link reliability, and path loss for modeling the cost function based on which the EMSMO provides the optimal routing. Simulations were performed, and the evaluation results showed that the proposed EOCC-TARA routing algorithm has superior performance than the traditional routing approaches in terms of energy consumption, network lifetime, throughput, temperature control, congestion overhead, delay, and successful transmission rate

    Simulation Model of Enhancing Performance of TCP/AQM Networks by Using Matlab

    Get PDF
    Internet networks are becoming more crowded every day due to the rapid development of modern life, which causes an increase in the demand for data circulating on the Internet. This creates several problems, such as buffer overflow of intermediate routers, and packet loss and time delay in packet delivery. The solution to these problems is to use a TCP/AQM system. The simulation results showed that there were differences in performance between the different controllers used. The proposed methods were simulated along with the required conditions in nonlinear systems to determine the best performance. It was found that the use of optimization Department of Electro-mechanical Engineering, University of Technology - Iraq tools (GA, FL) with a controller could achieve the best performance. The simulation results demonstrated the ability of the proposed methods to control the behavior of the system. The controller systems were simulated using Matlab/Simulink. The simulation results showed that the performance was better with the use of GA-PIDC compared to both FL-PIDC and PIDC in terms of stability time, height, and overrun ratio for a network with a variable queue that was targeted for comparison. The results were: the bypass ratio was 0, 3.3 and 21.8 the settling time was 0.002, 0.055, and 0.135; and the rise time was 0.001, 0.004 and 0.008 for GA-PIDC, FL-PIDC and PIDC, respectively. These results made it possible to compare the three control techniques

    Simulation Model of Enhancing Performance of TCP/AQM Networks by Using Matlab

    Get PDF
    Internet networks are becoming more crowded every day due to the rapid development of modern life, which causes an increase in the demand for data circulating on the Internet. This creates several problems, such as buffer overflow of intermediate routers, and packet loss and time delay in packet delivery. The solution to these problems is to use a TCP/AQM system. The simulation results showed that there were differences in performance between the different controllers used. The proposed methods were simulated along with the required conditions in nonlinear systems to determine the best performance. It was found that the use of optimization Department of Electro-mechanical Engineering, University of Technology - Iraq tools (GA, FL) with a controller could achieve the best performance. The simulation results demonstrated the ability of the proposed methods to control the behavior of the system. The controller systems were simulated using Matlab/Simulink. The simulation results showed that the performance was better with the use of GA-PIDC compared to both FL-PIDC and PIDC in terms of stability time, height, and overrun ratio for a network with a variable queue that was targeted for comparison. The results were: the bypass ratio was 0, 3.3 and 21.8 the settling time was 0.002, 0.055, and 0.135; and the rise time was 0.001, 0.004 and 0.008 for GA-PIDC, FL-PIDC and PIDC, respectively. These results made it possible to compare the three control techniques

    A Survey on Various Congestion Control Techniques in Wireless Sensor Networks

    Get PDF
    Wireless Sensor Networks (WSNs) are made up of small battery-powered sensors that can sense and monitor a variety of environmental conditions. These devices are self-contained and fault tolerant. The majority of WSNs are built to perform data collection tasks. These data are gathered and then sent to the sink node. Small packets are sent towards the sink node in such cases, and as a result, the areas near the sink node become congested, becoming the bottleneck of the entire network. In this paper, a survey of existing techniques or methods for detecting and eliminating congestions is conducted. Finally, a comparison in the form of a table based on various matrices is presented

    Proportional-integral genetic algorithm controller for stability of TCP network

    Get PDF
    The life development and increase the number of internet users imposed an increase in data circulating on the internet network and then make the network more congestion. As a result of all this, some problems arose such as time delay in packets delivery, loss of packets, and exceed the buffer capacity for the middle routers. To overcome those problems, transmission control protocol and active queue management (TCP/AQM) have been used. AQM is the main approach used to control congestion and overcome those problems to improve network performance. This work proposes to use the proportional-integral (PI) controller with a genetic algorithm (GA) as an active queue manager for routers of the Internet. The simulation results show a good performance for managing the congestion with using proportional-integral genetic algorithm (GA-PI) controller better than the PI controller

    Quality of Service Aware Dynamic Bandwidth Allocation for Rate Control in WSN

    Get PDF
    Different types of data can be generated by Wireless Sensor Networks (WSNs) in both Real-Time (RT) and Non-RT (NRT) scenarios. The combination of these factors, along with the limited bandwidth available, necessitates careful management of these categories in order to reduce congestion. Due to this, a Proficient Rate Control  and Fair Bandwidth Allocation (PRC-FBA) method has been created that prioritizes certain types of traffic and creates a virtual queue for them.In PRC-FBA, the Signal-to-Noise and Interference Ratio (SINR) model is applied to the problem of bandwidth allocation in WSN in an effort to find a compromise between equity and performance. Then, a brand-new bandwidth utility factor is defined with regard to equity and effectivenes. The FBA method in PRC-FBA is devoped for only improving   throughput, but not considering  delay. However, delay is the main factors for trasnmiitng NRT packets.  This paper offers a PRC with Quality of Service (QoS) aware Dynamic Bandwidth Allocation (PRC-QDBA) approach for allocating bandwidth while prioritizing packets based on their traffic classes. This model employs a QoS associated dynamic bandwidth allocation strategy which efficiently distributes the unused time slots among the required nodes. The distribution technique is performed based on hierarchical manner utilizing a parent-child association of tree topology. The parent node receives traffic indication maps (TIMs) from the children nodes and adopts them to allocate time slots based on their demamds. If the parent node is unable to allocate the required slots, it creates a TIM that indicating the demands and transfer it to its immediate parent node. This increases the entire performance rate of RT traffic. Furthermore, this model assures the packet forwarding for previously accepted flows by allowing node transmission based on ancestral connection capabilities. Finally, simulation results demonstartes that the suggested model significantly increases the throughput and delay for bandwidth allocation while also enabling QoS support for RT traffic in WSNs.&nbsp

    Congestion control mechanism for sensor-cloud Infrastructure

    Full text link
     This thesis has developed a sensor-Cloud system that integrates WBANs with Cloud computing to enable real-time sensor data collection, storage, processing, sharing and management. As the main contribution of this study, a congestion detection and control protocol is proposed to ensure acceptable data flows are maintained during the network lifetime

    An Adaptive Fault-Tolerant Communication Scheme for Body Sensor Networks

    Get PDF
    A high degree of reliability for critical data transmission is required in body sensor networks (BSNs). However, BSNs are usually vulnerable to channel impairments due to body fading effect and RF interference, which may potentially cause data transmission to be unreliable. In this paper, an adaptive and flexible fault-tolerant communication scheme for BSNs, namely AFTCS, is proposed. AFTCS adopts a channel bandwidth reservation strategy to provide reliable data transmission when channel impairments occur. In order to fulfill the reliability requirements of critical sensors, fault-tolerant priority and queue are employed to adaptively adjust the channel bandwidth allocation. Simulation results show that AFTCS can alleviate the effect of channel impairments, while yielding lower packet loss rate and latency for critical sensors at runtime.Comment: 10 figures, 19 page

    QoS Framework for a Multi-stack based Heterogeneous Wireless Sensor Network

    Get PDF
    Wireless sensor nodes consist of a collection of sensor nodes with constrained resources in terms of processing power and battery energy. Wireless sensors networks are used increasingly in many industrial and consumer applications. Sensors detect events and send via multi hop routing to the sink node for processing the event. The routing path is established through proactive or reactive routing protocols. To improve the performance of the Wireless Sensor Networks, multi stack architecture is addressed. But the multi stack architecture has many problems with respect to life time, routing loop and QOS. In this work we propose a solution to address all these three problems of life time, routing loop and QOS in case of multi stack architecture
    • …
    corecore