893 research outputs found

    Tracking Extrema in Dynamic Environment using Multi-Swarm Cellular PSO with Local Search

    Full text link
    Many real-world phenomena can be modelled as dynamic optimization problems. In such cases, the environment problem changes dynamically and therefore, conventional methods are not capable of dealing with such problems. In this paper, a novel multi-swarm cellular particle swarm optimization algorithm is proposed by clustering and local search. In the proposed algorithm, the search space is partitioned into cells, while the particles identify changes in the search space and form clusters to create sub-swarms. Then a local search is applied to improve the solutions in the each cell. Simulation results for static standard benchmarks and dynamic environments show superiority of the proposed method over other alternative approaches.Comment: 8 pages, 3 figure

    Visualization and clustering by 3D cellular automata: Application to unstructured data

    Full text link
    Given the limited performance of 2D cellular automata in terms of space when the number of documents increases and in terms of visualization clusters, our motivation was to experiment these cellular automata by increasing the size to view the impact of size on quality of results. The representation of textual data was carried out by a vector model whose components are derived from the overall balancing of the used corpus, Term Frequency Inverse Document Frequency (TF-IDF). The WorldNet thesaurus has been used to address the problem of the lemmatization of the words because the representation used in this study is that of the bags of words. Another independent method of the language was used to represent textual records is that of the n-grams. Several measures of similarity have been tested. To validate the classification we have used two measures of assessment based on the recall and precision (f-measure and entropy). The results are promising and confirm the idea to increase the dimension to the problem of the spatiality of the classes. The results obtained in terms of purity class (i.e. the minimum value of entropy) shows that the number of documents over longer believes the results are better for 3D cellular automata, which was not obvious to the 2D dimension. In terms of spatial navigation, cellular automata provide very good 3D performance visualization than 2D cellular automata.Comment: 10 pages, 8 figure

    Power-Aware Hybrid Intrusion Detection System (PHIDS) using Cellular Automata in Wireless AdHoc Networks

    Full text link
    Adhoc wireless network with their changing topology and distributed nature are more prone to intruders. The network monitoring functionality should be in operation as long as the network exists with nil constraints. The efficiency of an Intrusion detection system in the case of an adhoc network is not only determined by its dynamicity in monitoring but also in its flexibility in utilizing the available power in each of its nodes. In this paper we propose a hybrid intrusion detection system, based on a power level metric for potential adhoc hosts, which is used to determine the duration for which a particular node can support a network monitoring node. Power aware hybrid intrusion detection system focuses on the available power level in each of the nodes and determines the network monitors. Power awareness in the network results in maintaining power for network monitoring, with monitors changing often, since it is an iterative power optimal solution to identify nodes for distributed agent based intrusion detection. The advantage that this approach entails is the inherent flexibility it provides, by means of considering only fewer nodes for reestablishing network monitors. The detection of intrusions in the network is done with the help of Cellular Automat CA. The CAs classify a packet routed through the network either as normal or an intrusion. The use of CAs enable in the identification of already occurred intrusions as well as new intrusions

    Mean-Field Theory of Meta-Learning

    Full text link
    We discuss here the mean-field theory for a cellular automata model of meta-learning. The meta-learning is the process of combining outcomes of individual learning procedures in order to determine the final decision with higher accuracy than any single learning method. Our method is constructed from an ensemble of interacting, learning agents, that acquire and process incoming information using various types, or different versions of machine learning algorithms. The abstract learning space, where all agents are located, is constructed here using a fully connected model that couples all agents with random strength values. The cellular automata network simulates the higher level integration of information acquired from the independent learning trials. The final classification of incoming input data is therefore defined as the stationary state of the meta-learning system using simple majority rule, yet the minority clusters that share opposite classification outcome can be observed in the system. Therefore, the probability of selecting proper class for a given input data, can be estimated even without the prior knowledge of its affiliation. The fuzzy logic can be easily introduced into the system, even if learning agents are build from simple binary classification machine learning algorithms by calculating the percentage of agreeing agents.Comment: 23 page

    An optimised cellular automata model based on adaptive genetic algorithm for urban growth simulation

    Get PDF
    This paper presents an improved cellular automata (CA) model optimized using an adaptive genetic algorithm (AGA) to simulate the spatiooral process of urban growth. The AGA technique can be used to optimize the transition rules of the CA model defined through conventional methods such as logistic regression approach, resulting in higher simulation efficiency and improved results. Application of the AGA-CA model in Shanghai's Jiading District, Eastern China demonstrates that the model was able to generate reasonable representation of urban growth even with limited input data in defining its transition rules. The research shows that AGA technique can be integrated within a conventional CA based urban simulation model to improve human understanding on urban dynamics

    Automatic Finding Trapezoidal Membership Functions in Mining Fuzzy Association Rules Based on Learning Automata

    Get PDF
    Association rule mining is an important data mining technique used for discovering relationships among all data items. Membership functions have a significant impact on the outcome of the mining association rules. An important challenge in fuzzy association rule mining is finding an appropriate membership functions, which is an optimization issue. In the most relevant studies of fuzzy association rule mining, only triangle membership functions are considered. This study, as the first attempt, used a team of continuous action-set learning automata (CALA) to find both the appropriate number and positions of trapezoidal membership functions (TMFs). The spreads and centers of the TMFs were taken into account as parameters for the research space and a new approach for the establishment of a CALA team to optimize these parameters was introduced. Additionally, to increase the convergence speed of the proposed approach and remove bad shapes of membership functions, a new heuristic approach has been proposed. Experiments on two real data sets showed that the proposed algorithm improves the efficiency of the extracted rules by finding optimized membership functions

    AI Solutions for MDS: Artificial Intelligence Techniques for Misuse Detection and Localisation in Telecommunication Environments

    Get PDF
    This report considers the application of Articial Intelligence (AI) techniques to the problem of misuse detection and misuse localisation within telecommunications environments. A broad survey of techniques is provided, that covers inter alia rule based systems, model-based systems, case based reasoning, pattern matching, clustering and feature extraction, articial neural networks, genetic algorithms, arti cial immune systems, agent based systems, data mining and a variety of hybrid approaches. The report then considers the central issue of event correlation, that is at the heart of many misuse detection and localisation systems. The notion of being able to infer misuse by the correlation of individual temporally distributed events within a multiple data stream environment is explored, and a range of techniques, covering model based approaches, `programmed' AI and machine learning paradigms. It is found that, in general, correlation is best achieved via rule based approaches, but that these suffer from a number of drawbacks, such as the difculty of developing and maintaining an appropriate knowledge base, and the lack of ability to generalise from known misuses to new unseen misuses. Two distinct approaches are evident. One attempts to encode knowledge of known misuses, typically within rules, and use this to screen events. This approach cannot generally detect misuses for which it has not been programmed, i.e. it is prone to issuing false negatives. The other attempts to `learn' the features of event patterns that constitute normal behaviour, and, by observing patterns that do not match expected behaviour, detect when a misuse has occurred. This approach is prone to issuing false positives, i.e. inferring misuse from innocent patterns of behaviour that the system was not trained to recognise. Contemporary approaches are seen to favour hybridisation, often combining detection or localisation mechanisms for both abnormal and normal behaviour, the former to capture known cases of misuse, the latter to capture unknown cases. In some systems, these mechanisms even work together to update each other to increase detection rates and lower false positive rates. It is concluded that hybridisation offers the most promising future direction, but that a rule or state based component is likely to remain, being the most natural approach to the correlation of complex events. The challenge, then, is to mitigate the weaknesses of canonical programmed systems such that learning, generalisation and adaptation are more readily facilitated

    Landau Theory of Adaptive Integration in Computational Intelligence

    Full text link
    Computational Intelligence (CI) is a sub-branch of Artificial Intelligence paradigm focusing on the study of adaptive mechanisms to enable or facilitate intelligent behavior in complex and changing environments. There are several paradigms of CI [like artificial neural networks, evolutionary computations, swarm intelligence, artificial immune systems, fuzzy systems and many others], each of these has its origins in biological systems [biological neural systems, natural Darwinian evolution, social behavior, immune system, interactions of organisms with their environment]. Most of those paradigms evolved into separate machine learning (ML) techniques, where probabilistic methods are used complementary with CI techniques in order to effectively combine elements of learning, adaptation, evolution and Fuzzy logic to create heuristic algorithms that are, in some sense, intelligent. The current trend is to develop consensus techniques, since no single machine learning algorithms is superior to others in all possible situations. In order to overcome this problem several meta-approaches were proposed in ML focusing on the integration of results from different methods into single prediction. We discuss here the Landau theory for the nonlinear equation that can describe the adaptive integration of information acquired from an ensemble of independent learning agents. The influence of each individual agent on other learners is described similarly to the social impact theory. The final decision outcome for the consensus system is calculated using majority rule in the stationary limit, yet the minority solutions can survive inside the majority population as the complex intermittent clusters of opposite opinion.Comment: 19 page

    Unity Attractors Inspired Programmable Cellular Automata and Barnacles Swarm Optimization-Based Energy Efficient Data Communication for Securing IoT

    Get PDF
    Wireless Sensor Networks (WSNs) is the innovative technology that covers wide range of application that possesses high potential merits such as long-term operation, unmonitored network access, data transmission, and low implementation cost. In this context, Internet of Things (IoT) have evolved as an exciting paradigm with the rapid advancement of cellular mobile networks, near field communications and cloud computing. WSNs potentially interacts with the IoT devices based on the sensing features of web devices and communication technologies in sensors. At this juncture, IoT need to facilitate huge amount of data aggregation with security and disseminate it to the reliable path to make it reach the required base station. In this paper, Unity Attractors Inspired Programmable Cellular Automata and Barnacles Swarm Optimization-Based Energy Efficient Data Communication Mechanism (UAIPCA-BSO) is proposed for  Securing data and estimate the optimal path through which it can be forwarded in the IoT environment. In specific, Unity Attractors Inspired Programmable Cellular Automata is adopted for guaranteeing security during the data transmission process. It also aids in determining the optimal path of data transmission based on the merits of Barnacles Swarm Optimization Algorithm (BSOA), such that data is made to reach the base station at the required destination in time. The simulation results of UAIPCA-BSO confirmed minimized end-to-end delay , accuracy and time taken for malicious node detection, compared to the baseline approaches used for comparison
    • …
    corecore