4,126 research outputs found

    A General Spatio-Temporal Clustering-Based Non-local Formulation for Multiscale Modeling of Compartmentalized Reservoirs

    Full text link
    Representing the reservoir as a network of discrete compartments with neighbor and non-neighbor connections is a fast, yet accurate method for analyzing oil and gas reservoirs. Automatic and rapid detection of coarse-scale compartments with distinct static and dynamic properties is an integral part of such high-level reservoir analysis. In this work, we present a hybrid framework specific to reservoir analysis for an automatic detection of clusters in space using spatial and temporal field data, coupled with a physics-based multiscale modeling approach. In this work a novel hybrid approach is presented in which we couple a physics-based non-local modeling framework with data-driven clustering techniques to provide a fast and accurate multiscale modeling of compartmentalized reservoirs. This research also adds to the literature by presenting a comprehensive work on spatio-temporal clustering for reservoir studies applications that well considers the clustering complexities, the intrinsic sparse and noisy nature of the data, and the interpretability of the outcome. Keywords: Artificial Intelligence; Machine Learning; Spatio-Temporal Clustering; Physics-Based Data-Driven Formulation; Multiscale Modelin

    Data Analysis and Neuro-Fuzzy Technique for EOR Screening : Application in Angolan Oilfields

    Get PDF
    This study is sponsored by the Angolan National Oil Company (Sonangol EP) and the authors are grateful for their support and the permission to use the data and publish this manuscriptPeer reviewedPublisher PD

    Clustering Data of Mixed Categorical and Numerical Type with Unsupervised Feature Learning

    Get PDF
    Mixed-type categorical and numerical data are a challenge in many applications. This general area of mixed-type data is among the frontier areas, where computational intelligence approaches are often brittle compared with the capabilities of living creatures. In this paper, unsupervised feature learning (UFL) is applied to the mixed-type data to achieve a sparse representation, which makes it easier for clustering algorithms to separate the data. Unlike other UFL methods that work with homogeneous data, such as image and video data, the presented UFL works with the mixed-type data using fuzzy adaptive resonance theory (ART). UFL with fuzzy ART (UFLA) obtains a better clustering result by removing the differences in treating categorical and numeric features. The advantages of doing this are demonstrated with several real-world data sets with ground truth, including heart disease, teaching assistant evaluation, and credit approval. The approach is also demonstrated on noisy, mixed-type petroleum industry data. UFLA is compared with several alternative methods. To the best of our knowledge, this is the first time UFL has been extended to accomplish the fusion of mixed data types

    Analyzing organic richness of source rocks from well log data by using SVM and ANN classifiers: A case study from the Kazhdumi formation, the Persian Gulf basin, offshore Iran

    Get PDF
    Determination of TOC is critical to the evaluation of every source rock unit. Methods which are dependent upon extensive laboratory testing are limited by the availability and integrity of the rock samples. Prediction of TOC (Total Organic Carbon) from well Log data being available for the majority of wells being drilled provides rapid evaluation of organic content, producing a continuous record while eliminating sampling issues. Therefore, the ideal method for determining the TOC fraction within source rock units would utilize common well log data. So a model was developed to formulate TOC values in the absence of laboratory TOC measurements from conventional well log data. Consequently, with the assistance of FL (Fuzzy Logic), TOC estimated from well log data with an overall prediction accuracy of 0.9425 for the test set. Following that TOC content of the Kazhdumi formation optimally has been divided into 4 zones using K-means cluster analysis, since searching for patterns is one of the main goals in data mining. There is a general increase in TOC from zone 1 to zone 4. The optimal number of zones has been detected by means of the knee method that finds the ā€œkneeā€ in a number of clusters vs. Compactness, Davies-Bouldin and Silhouette values. In the last step, using SVM (Support Vector Machine) and ANN (Artificial Neural Network) algorithms, two commonly used techniques, classification rules developed to predict the source rock class-membership (zones) from well log data. The proposed method is found effective in directly extracting patterns from well log data after defining classification rules. Quantitative comparisons of the results from ANN and SVM depicts that for classification problem of source rock zonation SVM with RBF (Radial Basis Function) kernel readily outperforms ANN in term of classification accuracy (0.9077 and 0.9369 for ANN and SVM, respectively), reduced computational time and highly repeatable results. This method would enable a more elaborate assessment of Kazhdumi formation to be undertaken by providing a comprehensive quick look results derived directly from well log data while using conventional methods one canā€™t define patterns within the data without grouping data manually
    • ā€¦
    corecore