197 research outputs found

    Theoretical Interpretations and Applications of Radial Basis Function Networks

    Get PDF
    Medical applications usually used Radial Basis Function Networks just as Artificial Neural Networks. However, RBFNs are Knowledge-Based Networks that can be interpreted in several way: Artificial Neural Networks, Regularization Networks, Support Vector Machines, Wavelet Networks, Fuzzy Controllers, Kernel Estimators, Instanced-Based Learners. A survey of their interpretations and of their corresponding learning algorithms is provided as well as a brief survey on dynamic learning algorithms. RBFNs' interpretations can suggest applications that are particularly interesting in medical domains

    Otimização multi-objetivo em aprendizado de máquina

    Get PDF
    Orientador: Fernando José Von ZubenTese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Elétrica e de ComputaçãoResumo: Regressão logística multinomial regularizada, classificação multi-rótulo e aprendizado multi-tarefa são exemplos de problemas de aprendizado de máquina em que objetivos conflitantes, como funções de perda e penalidades que promovem regularização, devem ser simultaneamente minimizadas. Portanto, a perspectiva simplista de procurar o modelo de aprendizado com o melhor desempenho deve ser substituída pela proposição e subsequente exploração de múltiplos modelos de aprendizado eficientes, cada um caracterizado por um compromisso (trade-off) distinto entre os objetivos conflitantes. Comitês de máquinas e preferências a posteriori do tomador de decisão podem ser implementadas visando explorar adequadamente este conjunto diverso de modelos de aprendizado eficientes, em busca de melhoria de desempenho. A estrutura conceitual multi-objetivo para aprendizado de máquina é suportada por três etapas: (1) Modelagem multi-objetivo de cada problema de aprendizado, destacando explicitamente os objetivos conflitantes envolvidos; (2) Dada a formulação multi-objetivo do problema de aprendizado, por exemplo, considerando funções de perda e termos de penalização como objetivos conflitantes, soluções eficientes e bem distribuídas ao longo da fronteira de Pareto são obtidas por um solver determinístico e exato denominado NISE (do inglês Non-Inferior Set Estimation); (3) Esses modelos de aprendizado eficientes são então submetidos a um processo de seleção de modelos que opera com preferências a posteriori, ou a filtragem e agregação para a síntese de ensembles. Como o NISE é restrito a problemas de dois objetivos, uma extensão do NISE capaz de lidar com mais de dois objetivos, denominada MONISE (do inglês Many-Objective NISE), também é proposta aqui, sendo uma contribuição adicional que expande a aplicabilidade da estrutura conceitual proposta. Para atestar adequadamente o mérito da nossa abordagem multi-objetivo, foram realizadas investigações mais específicas, restritas à aprendizagem de modelos lineares regularizados: (1) Qual é o mérito relativo da seleção a posteriori de um único modelo de aprendizado, entre os produzidos pela nossa proposta, quando comparado com outras abordagens de modelo único na literatura? (2) O nível de diversidade dos modelos de aprendizado produzidos pela nossa proposta é superior àquele alcançado por abordagens alternativas dedicadas à geração de múltiplos modelos de aprendizado? (3) E quanto à qualidade de predição da filtragem e agregação dos modelos de aprendizado produzidos pela nossa proposta quando aplicados a: (i) classificação multi-classe, (ii) classificação desbalanceada, (iii) classificação multi-rótulo, (iv) aprendizado multi-tarefa, (v) aprendizado com multiplos conjuntos de atributos? A natureza determinística de NISE e MONISE, sua capacidade de lidar adequadamente com a forma da fronteira de Pareto em cada problema de aprendizado, e a garantia de sempre obter modelos de aprendizado eficientes são aqui pleiteados como responsáveis pelos resultados promissores alcançados em todas essas três frentes de investigação específicasAbstract: Regularized multinomial logistic regression, multi-label classification, and multi-task learning are examples of machine learning problems in which conflicting objectives, such as losses and regularization penalties, should be simultaneously minimized. Therefore, the narrow perspective of looking for the learning model with the best performance should be replaced by the proposition and further exploration of multiple efficient learning models, each one characterized by a distinct trade-off among the conflicting objectives. Committee machines and a posteriori preferences of the decision-maker may be implemented to properly explore this diverse set of efficient learning models toward performance improvement. The whole multi-objective framework for machine learning is supported by three stages: (1) The multi-objective modelling of each learning problem, explicitly highlighting the conflicting objectives involved; (2) Given the multi-objective formulation of the learning problem, for instance, considering loss functions and penalty terms as conflicting objective functions, efficient solutions well-distributed along the Pareto front are obtained by a deterministic and exact solver named NISE (Non-Inferior Set Estimation); (3) Those efficient learning models are then subject to a posteriori model selection, or to ensemble filtering and aggregation. Given that NISE is restricted to two objective functions, an extension for many objectives, named MONISE (Many Objective NISE), is also proposed here, being an additional contribution and expanding the applicability of the proposed framework. To properly access the merit of our multi-objective approach, more specific investigations were conducted, restricted to regularized linear learning models: (1) What is the relative merit of the a posteriori selection of a single learning model, among the ones produced by our proposal, when compared with other single-model approaches in the literature? (2) Is the diversity level of the learning models produced by our proposal higher than the diversity level achieved by alternative approaches devoted to generating multiple learning models? (3) What about the prediction quality of ensemble filtering and aggregation of the learning models produced by our proposal on: (i) multi-class classification, (ii) unbalanced classification, (iii) multi-label classification, (iv) multi-task learning, (v) multi-view learning? The deterministic nature of NISE and MONISE, their ability to properly deal with the shape of the Pareto front in each learning problem, and the guarantee of always obtaining efficient learning models are advocated here as being responsible for the promising results achieved in all those three specific investigationsDoutoradoEngenharia de ComputaçãoDoutor em Engenharia Elétrica2014/13533-0FAPES

    Speech Recognition

    Get PDF
    Chapters in the first part of the book cover all the essential speech processing techniques for building robust, automatic speech recognition systems: the representation for speech signals and the methods for speech-features extraction, acoustic and language modeling, efficient algorithms for searching the hypothesis space, and multimodal approaches to speech recognition. The last part of the book is devoted to other speech processing applications that can use the information from automatic speech recognition for speaker identification and tracking, for prosody modeling in emotion-detection systems and in other speech processing applications that are able to operate in real-world environments, like mobile communication services and smart homes

    Socio-Cognitive and Affective Computing

    Get PDF
    Social cognition focuses on how people process, store, and apply information about other people and social situations. It focuses on the role that cognitive processes play in social interactions. On the other hand, the term cognitive computing is generally used to refer to new hardware and/or software that mimics the functioning of the human brain and helps to improve human decision-making. In this sense, it is a type of computing with the goal of discovering more accurate models of how the human brain/mind senses, reasons, and responds to stimuli. Socio-Cognitive Computing should be understood as a set of theoretical interdisciplinary frameworks, methodologies, methods and hardware/software tools to model how the human brain mediates social interactions. In addition, Affective Computing is the study and development of systems and devices that can recognize, interpret, process, and simulate human affects, a fundamental aspect of socio-cognitive neuroscience. It is an interdisciplinary field spanning computer science, electrical engineering, psychology, and cognitive science. Physiological Computing is a category of technology in which electrophysiological data recorded directly from human activity are used to interface with a computing device. This technology becomes even more relevant when computing can be integrated pervasively in everyday life environments. Thus, Socio-Cognitive and Affective Computing systems should be able to adapt their behavior according to the Physiological Computing paradigm. This book integrates proposals from researchers who use signals from the brain and/or body to infer people's intentions and psychological state in smart computing systems. The design of this kind of systems combines knowledge and methods of ubiquitous and pervasive computing, as well as physiological data measurement and processing, with those of socio-cognitive and affective computing
    corecore