4,503 research outputs found

    Variable Selection using Non-Standard Optimisation of Information Criteria

    Get PDF
    The question of variable selection in a regression model is a major open research topic in econometrics. Traditionally two broad classes of methods have been used. One is sequential testing and the other is information criteria. The advent of large datasets used by institutions such as central banks has exacerbated this model selection problem. This paper provides a new solution in the context of information criteria. The solution rests on the judicious selection of a subset of models for consideration using nonstandard optimisation algorithms for information criterion minimisation. In particular, simulated annealing and genetic algorithms are considered. Both a Monte Carlo study and an empirical forecasting application to UK CPI infation suggest that the new methods are worthy of further consideration.Simulated Annealing, Genetic Algorithms, Information criteria, Model selection, Forecasting, Inflation

    A comprehensive literature classification of simulation optimisation methods

    Get PDF
    Simulation Optimization (SO) provides a structured approach to the system design and configuration when analytical expressions for input/output relationships are unavailable. Several excellent surveys have been written on this topic. Each survey concentrates on only few classification criteria. This paper presents a literature survey with all classification criteria on techniques for SO according to the problem of characteristics such as shape of the response surface (global as compared to local optimization), objective functions (single or multiple objectives) and parameter spaces (discrete or continuous parameters). The survey focuses specifically on the SO problem that involves single per-formance measureSimulation Optimization, classification methods, literature survey

    Modeling and Analysis Generic Interface for eXternal numerical codes (MAGIX)

    Full text link
    The modeling and analysis generic interface for external numerical codes (MAGIX) is a model optimizer developed under the framework of the coherent set of astrophysical tools for spectroscopy (CATS) project. The MAGIX package provides a framework of an easy interface between existing codes and an iterating engine that attempts to minimize deviations of the model results from available observational data, constraining the values of the model parameters and providing corresponding error estimates. Many models (and, in principle, not only astrophysical models) can be plugged into MAGIX to explore their parameter space and find the set of parameter values that best fits observational/experimental data. MAGIX complies with the data structures and reduction tools of ALMA (Atacama Large Millimeter Array), but can be used with other astronomical and with non-astronomical data.Comment: 12 pages, 15 figures, 2 tables, paper is also available at http://www.aanda.org/articles/aa/pdf/forth/aa20063-12.pd

    An adaptive hybrid genetic-annealing approach for solving the map problem on belief networks

    Get PDF
    Genetic algorithms (GAs) and simulated annealing (SA) are two important search methods that have been used successfully in solving difficult problems such as combinatorial optimization problems. Genetic algorithms are capable of wide exploration of the search space, while simulated annealing is capable of fine tuning a good solution. Combining both techniques may result in achieving the benefits of both and improving the quality of the solutions obtained. Several attempts have been made to hybridize GAs and SA. One such attempt was to augment a standard GA with simulated annealing as a genetic operator. SA in that case acted as a directed or intelligent mutation operator as opposed to the random, undirected mutation operator of GAs. Although using this technique showed some advantages over GA used alone, one problem was to find fixed global annealing parameters that work for all solutions and all stages in the search process. Failing to find optimum annealing parameters affects the quality of the solution obtained and may degrade performance. In this research, we try to overcome this weakness by introducing an adaptive hybrid GA - SA algorithm, in which simulated annealing acts as a special case of mutation. However, the annealing operator used in this technique is adaptive in the sense that the annealing parameters are evolved and optimized according to the requirements of the search process. Adaptation is expected to help guide the search towards optimum solutions with minimum effort of parameter optimization. The algorithm is tested in solving an important NP-hard problem, which is the MAP (Maximum a-Posteriori) assignment problem on BBNs (Bayesian Belief Networks). The algorithm is also augmented with some problem specific information used to design a new GA crossover operator. The results obtained from testing the algorithm on several BBN graphs with large numbers of nodes and different network structures indicate that the adaptive hybrid algorithm provides an improvement of solution quality over that obtained by GA used alone and GA augmented with standard non-adaptive simulated annealing. Its effect, however, is more profound for problems with large numbers of nodes, which are difficult for GA alone to solve

    Interacting multiple -- Try algorithms with different proposal distributions

    Get PDF
    We propose a new class of interacting Markov chain Monte Carlo (MCMC) algorithms designed for increasing the efficiency of a modified multiple-try Metropolis (MTM) algorithm. The extension with respect to the existing MCMC literature is twofold. The sampler proposed extends the basic MTM algorithm by allowing different proposal distributions in the multipletry generation step. We exploit the structure of the MTM algorithm with different proposal distributions to naturally introduce an interacting MTM mechanism (IMTM) that expands the class of population Monte Carlo methods and builds connections with the rapidly expanding world of adaptive MCMC. We show the validity of the algorithm and discuss the choice of the selection weights and of the different proposals. We provide numerical studies which show that the new algorithm can perform better than the basic MTM algorithm and that the interaction mechanism allows the IMTM to efficiently explore the state space.Interacting Monte Carlo, Markov chain Monte Carlo, Multiple-try Metropolis, Population Monte Carlo

    Theory of Genetic Algorithms II: models for genetic operators over the string-tensor representation of populations and convergence to global optima for arbitrary fitness function under scaling

    Get PDF
    AbstractWe present a theoretical framework for an asymptotically converging, scaled genetic algorithm which uses an arbitrary-size alphabet and common scaled genetic operators. The alphabet can be interpreted as a set of equidistant real numbers and multiple-spot mutation performs a scalable compromise between pure random search and neighborhood-based change on the alphabet level. We discuss several versions of the crossover operator and their interplay with mutation. In particular, we consider uniform crossover and gene-lottery crossover which does not commute with mutation. The Vose–Liepins version of mutation-crossover is also integrated in our approach. In order to achieve convergence to global optima, the mutation rate and the crossover rate have to be annealed to zero in proper fashion, and unbounded, power-law scaled proportional fitness selection is used with logarithmic growth in the exponent. Our analysis shows that using certain types of crossover operators and large population size allows for particularly slow annealing schedules for the crossover rate. In our discussion, we focus on the following three major aspects based upon contraction properties of the mutation and fitness selection operators: (i) the drive towards uniform populations in a genetic algorithm using standard operations, (ii) weak ergodicity of the inhomogeneous Markov chain describing the probabilistic model for the scaled algorithm, (iii) convergence to globally optimal solutions. In particular, we remove two restrictions imposed in Theorem 8.6 and Remark 8.7 of (Theoret. Comput. Sci. 259 (2001) 1) where a similar type of algorithm is considered as described here: mutation need not commute with crossover and the fitness function (which may come from a coevolutionary single species setting) need not have a single maximum

    Cluster Analysis of Panel Datasets using Non-Standard Optimisation of Information Criteria

    Get PDF
    Panel datasets have been increasingly used in economics to analyse complex economic phenomena. One of the attractions of panel datasets is the ability to use an extended dataset to obtain information about parameters of interest which are assumed to have common values across panel units. However, the assumption of poolability has not been studied extensively beyond tests that determine whether a given dataset is poolable. We propose an information criterion method that enables the distinction of a set of series into a set of poolable series for which the hypothesis of a common parameter subvector cannot be reject and a set of series for which the poolability hypothesis fails. The method can be extended to analyse datasets with multiple clusters of series with similar characteristics. We discuss the theoretical properties of the method and investigate its small sample performance in a Monte Carlo study.Panel datasets, Poolability, Information criteria, Genetic Algorithm, Simulated Annealing
    • …
    corecore