2,077 research outputs found

    Supporting Memorization and Problem Solving with Spatial Information Presentations in Virtual Environments

    Get PDF
    While it has been suggested that immersive virtual environments could provide benefits for educational applications, few studies have formally evaluated how the enhanced perceptual displays of such systems might improve learning. Using simplified memorization and problem-solving tasks as representative approximations of more advanced types of learning, we are investigating the effects of providing supplemental spatial information on the performance of learning-based activities within virtual environments. We performed two experiments to investigate whether users can take advantage of a spatial information presentation to improve performance on cognitive processing activities. In both experiments, information was presented either directly in front of the participant or wrapped around the participant along the walls of a surround display. In our first experiment, we found that the spatial presentation caused better performance on a memorization and recall task. To investigate whether the advantages of spatial information presentation extend beyond memorization to higher level cognitive activities, our second experiment employed a puzzle-like task that required critical thinking using the presented information. The results indicate that no performance improvements or mental workload reductions were gained from the spatial presentation method compared to a non-spatial layout for our problem-solving task. The results of these two experiments suggest that supplemental spatial information can support performance improvements for cognitive processing and learning-based activities, but its effectiveness is dependent on the nature of the task and a meaningful use of space

    Navigating large-scale virtual environments: what differences occur between helmet-mounted and desk-top displays?

    Get PDF
    Participants used a helmet-mounted display (HMD) and a desk-top (monitor) display to learn the layouts of two large-scale virtual environments (VEs) through repeated, direct navigational experience. Both VEs were ‘‘virtual buildings’’ containing more than seventy rooms. Participants using the HMD navigated the buildings significantly more quickly and developed a significantly more accurate sense of relative straight-line distance. There was no significant difference between the two types of display in terms of the distance that participants traveled or the mean accuracy of their direction estimates. Behavioral analyses showed that participants took advantage of the natural, head-tracked interface provided by the HMD in ways that included ‘‘looking around’’more often while traveling through the VEs, and spending less time stationary in the VEs while choosing a direction in which to travel

    Assessment of Psychophysiological Differences of West Point Cadets and Civilian Controls Immersed within a Virtual Environment

    Full text link
    Abstract. An important question for ecologically valid virtual environments is whether cohort characteristics affect immersion. If a method for assessing a cer-tain neurocognitive capacity (e.g. attentional processing) is adapted to a cohort other than the one that was used for the initial normative distribution, data ob-tained in the new cohort may not be reflective of the neurocognitive capacity in question. We assessed the psychophysiological impact of different levels of immersion upon persons from two cohorts: 1) civilian university students; and 2) West Point Cadets. Cadets were found to have diminished startle eyeblink amplitude compared with civilians, which may reflect that cadets experienced less negative affect during the scenario in general. Further, heart rate data re-vealed that Cadets had significantly lower heart rates than Civilians in the “low ” but not “high ” immersion condition. This suggests that “low ” immersion conditions may not have the ecological validity necessary to evoke consistent affect across cohorts

    Investigating the Correlation Between Presence and Reaction Time in Mixed Reality

    Full text link
    Measuring presence is critical to improving user involvement and performance in Mixed Reality (MR). \emph{Presence}, a crucial aspect of MR, is traditionally gauged using subjective questionnaires, leading to a lack of time-varying responses and susceptibility to user bias. Inspired by the existing literature on the relationship between presence and human performance, the proposed methodology systematically measures a user's reaction time to a visual stimulus as they interact within a manipulated MR environment. We explore the user reaction time as a quantity that can be easily measured using the systemic tools available in modern MR devices. We conducted an exploratory study (N=40) with two experiments designed to alter the users' sense of presence by manipulating \emph{place illusion} and \emph{plausibility illusion}. We found a significant correlation between presence scores and reaction times with a correlation coefficient -0.65, suggesting that users with a higher sense of presence responded more swiftly to stimuli. We develop a model that estimates a user's presence level using the reaction time values with high accuracy of up to 80\%. While our study suggests that reaction time can be used as a measure of presence, further investigation is needed to improve the accuracy of the model

    Surgical Skill and Video Games: A Meta-Analytic Review

    Get PDF
    As the popularity of video games has grown over the past decade, so has interest in their capacity to serve as tools for education. The technology behind modern laparoscopic surgery draws strong parallels to modern video games, and as such has inspired initial research into the potential relationship between video game play and surgical performance. To date, a number of researchers have conducted studies on this relationship; however, no structured, statistical review of accessible data has taken place. Thus, the goal of this analysis was to examine the available literature and report the significance of the cumulative findings. Through my process, a total of 21 studies involving 1220 participants were gathered through multi-step review, and organized into one of three experimental domains - game training, VR training, and gaming history. Effect size analysis using Hedge’s G and Fisher’s Z yielded statistically significant results in all three domains, thus supporting the consensus belief that video game play has a positive effect on laparoscopic surgical training and performance. Given the particularly strong effect of virtual reality training on surgical performance, it would be valuable to investigate the differential effects of virtual reality, and how these effects might be further developed into more effective educational instruments

    How immersive virtual reality methods may meet the criteria of the National Academy of Neuropsychology and American Academy of Clinical Neuropsychology:A software review of the Virtual Reality Everyday Assessment Lab (VR-EAL)

    Get PDF
    International audienceClinical tools involving immersive virtual reality (VR) may bring several advantages to cognitive neuroscience and neuropsychology. However, there are some technical and methodological pitfalls. The American Academy of Clinical Neuropsychology (AACN) and the National Academy of Neuropsychology (NAN) raised 8 key issues pertaining to Computerized Neuropsychological Assessment Devices. These issues pertain to: (1) the safety and effectivity; (2) the identity of the end-user; (3) the technical hardware and software features; (4) privacy and data security; (5) the psychometric properties; (6) examinee issues; (7) the use of reporting services; and (8) the reliability of the responses and results. The VR Everyday Assessment Lab (VR-EAL) is the first immersive VR neuropsychological battery with enhanced ecological validity for the assessment of everyday cognitive functions by offering a pleasant testing experience without inducing cybersickness. The VR-EAL meets the criteria of the NAN and AACN, addresses the methodological pitfalls, and brings advantages for neuropsychological testing. However, there are still shortcomings of the VR-EAL, which should be addressed. Future iterations should strive to improve the embodiment illusion in VR-EAL and the creation of an open access VR software library should be attempted. The discussed studies demonstrate the utility of VR methods in cognitive neuroscience and neuropsychology
    • 

    corecore