7,584 research outputs found

    Model-based dependability analysis : state-of-the-art, challenges and future outlook

    Get PDF
    Abstract: Over the past two decades, the study of model-based dependability analysis has gathered significant research interest. Different approaches have been developed to automate and address various limitations of classical dependability techniques to contend with the increasing complexity and challenges of modern safety-critical system. Two leading paradigms have emerged, one which constructs predictive system failure models from component failure models compositionally using the topology of the system. The other utilizes design models - typically state automata - to explore system behaviour through fault injection. This paper reviews a number of prominent techniques under these two paradigms, and provides an insight into their working mechanism, applicability, strengths and challenges, as well as recent developments within these fields. We also discuss the emerging trends on integrated approaches and advanced analysis capabilities. Lastly, we outline the future outlook for model-based dependability analysis

    On minimising the maximum expected verification time

    Get PDF
    Cyber Physical Systems (CPSs) consist of hardware and software components. To verify that the whole (i.e., software + hardware) system meets the given specifications, exhaustive simulation-based approaches (Hardware In the Loop Simulation, HILS) can be effectively used by first generating all relevant simulation scenarios (i.e., sequences of disturbances) and then actually simulating all of them (verification phase). When considering the whole verification activity, we see that the above mentioned verification phase is repeated until no error is found. Accordingly, in order to minimise the time taken by the whole verification activity, in each verification phase we should, ideally, start by simulating scenarios witnessing errors (counterexamples). Of course, to know beforehand the set of such scenarios is not feasible. In this paper we show how to select scenarios so as to minimise the Worst Case Expected Verification Tim

    EXFI: a low cost Fault Injection System for embedded Microprocessor-based Boards

    Get PDF
    Evaluating the faulty behavior of low-cost embedded microprocessor-based boards is an increasingly important issue, due to their adoption in many safety critical systems. The architecture of a complete Fault Injection environment is proposed, integrating a module for generating a collapsed list of faults, and another for performing their injection and gathering the results. To address this issue, the paper describes a software-implemented Fault Injection approach based on the Trace Exception Mode available in most microprocessors. The authors describe EXFI, a prototypical system implementing the approach, and provide data about some sample benchmark applications. The main advantages of EXFI are the low cost, the good portability, and the high efficienc
    • …
    corecore