47,035 research outputs found

    ENMat international projects: FP7 NMP coordination action: 2BFUNTEX

    Get PDF
    Boosting collaboration between research centres and industry to enhance rapid industrial uptake of innovative functional textile structures and textile-related materials in a mondial market 2BFUNTEX will exploit the untapped potential in functional textile structures and textile related materials. It will bring together all innovation actors in the field fostering a multidisciplinary approach between universities, research institutes, SMEs and sector associations. The 2BFUNTEX team will identify technological gaps and eliminate barriers resulting in a faster industrial uptake of added value functional materials with new functionalities and improved performance and resulting in creation of new business worldwide. Technological needs will be mapped, new joint international research disciplines will be identified and multidisciplinary lab teams will be created. International cooperation will be favoured to exploit the worldwide market expansion potential. Industry will be involved at all stages of the process. The inventory will enlarge the team of important textile universities and renowned materials research centres and will identify new collaborations. Synergy will be reinforced and created which will enable to identify and develop new functional materials. Training materials regarding functional materials for research and industrial purposes will be developed and implemented to allow a common language regarding functional textile structures and text ile related materials, and will increase the number of well-trained people in this field. Further, the 2BFUNTEX partners will organise and participate in conferences, workshops and brokerage events. Along with a website with an extensive database comprising all information gained throughout the project, collaboration will be boosted and rapid industrial uptake catalysed and enhanced. The project duration will be 4 years and the consortium includes 26 partners from 16 countries. Start date : 01/01/2012 More information: Ir. Els Van der Burght Department of Textiles/Ghent University [email protected] [email protected] URL: http://www.2bfuntex.e

    Aerospace medicine and biology: A continuing bibliography with indexes (supplement 320)

    Get PDF
    This bibliography lists 125 reports, articles and other documents introduced into the NASA Scientific and Technical Information System during January, 1989. Subject coverage includes: aerospace medicine and psychology, life support systems and controlled environments, safety equipment, exobiology and extraterrestrial life, and flight crew behavior and performance

    ENMat international projects: FP7 NMP large collaborative project: 3D-LightTrans

    Get PDF
    Large scale manufacturing technology for high-performance lightweight 3D multifunctional composites The goal of the 3D-LightTrans project is to provide groundbreaking, highly flexible, efficient and adaptable low-cost technologies for the manufacturing of integral large scale 3D textile reinforced plastic composites, including innovative approaches for the individual processes and its integration in complete manufacturing chains, which will enable to shift them from its current position in cost intensive, small series niche markets, to broadly extended mass product applications, not only in transportation, but also in other key sectors, like health and leisure. To fulfil this goal, the 3DLightTrans manufacturing chains will be based on multimaterial semifinished fabrics, processed to deep draped prefixed multilayered and multifunctional 3D -textile preforms, which will be processed into composites by a thermoforming process. By integrating these new, innovative process steps with full automation in -nowadays mostly manually performed- complex handling operations, it will be possible to obtain a fully automated and highly adaptable manufacturing chain to achieve integral large scale 3D composites. 3D-LightTrans will open the way to a totally new concept for the design, manufacturing and application of composites for low-cost mass products in a wide range of sectors. The Consortium brings together multidisciplinary research teams involving European leading companies, including industrial stakeholders from machine tools and machine automation and several OEM active in the field of processing of flexible materials and composite manufacturing, as well as from the application sector, and extensive expertise from well known research specialists in the area of materials, production research and technical textiles in particular. Start date : 01/04/2011 Project duration : 4 years More information: Dr. Erich Kny Austrian Institute of Technology, [email protected] URL: http://www.3d-lighttrans.com

    CBR and MBR techniques: review for an application in the emergencies domain

    Get PDF
    The purpose of this document is to provide an in-depth analysis of current reasoning engine practice and the integration strategies of Case Based Reasoning and Model Based Reasoning that will be used in the design and development of the RIMSAT system. RIMSAT (Remote Intelligent Management Support and Training) is a European Commission funded project designed to: a.. Provide an innovative, 'intelligent', knowledge based solution aimed at improving the quality of critical decisions b.. Enhance the competencies and responsiveness of individuals and organisations involved in highly complex, safety critical incidents - irrespective of their location. In other words, RIMSAT aims to design and implement a decision support system that using Case Base Reasoning as well as Model Base Reasoning technology is applied in the management of emergency situations. This document is part of a deliverable for RIMSAT project, and although it has been done in close contact with the requirements of the project, it provides an overview wide enough for providing a state of the art in integration strategies between CBR and MBR technologies.Postprint (published version

    Heap Abstractions for Static Analysis

    Full text link
    Heap data is potentially unbounded and seemingly arbitrary. As a consequence, unlike stack and static memory, heap memory cannot be abstracted directly in terms of a fixed set of source variable names appearing in the program being analysed. This makes it an interesting topic of study and there is an abundance of literature employing heap abstractions. Although most studies have addressed similar concerns, their formulations and formalisms often seem dissimilar and some times even unrelated. Thus, the insights gained in one description of heap abstraction may not directly carry over to some other description. This survey is a result of our quest for a unifying theme in the existing descriptions of heap abstractions. In particular, our interest lies in the abstractions and not in the algorithms that construct them. In our search of a unified theme, we view a heap abstraction as consisting of two features: a heap model to represent the heap memory and a summarization technique for bounding the heap representation. We classify the models as storeless, store based, and hybrid. We describe various summarization techniques based on k-limiting, allocation sites, patterns, variables, other generic instrumentation predicates, and higher-order logics. This approach allows us to compare the insights of a large number of seemingly dissimilar heap abstractions and also paves way for creating new abstractions by mix-and-match of models and summarization techniques.Comment: 49 pages, 20 figure
    • …
    corecore