101,724 research outputs found

    A Functional Driver Analyzing Concept

    Get PDF
    It is evident that a lot of accidents occur because of drowsiness or inattentiveness of the driver. The logical consequence is that we have to find methods to better analyze the driver. A lot of research has been spent on camera-based systems which focus on the driver's eye gaze or his head movement. But there are few systems that provide camera-free driver analyzing. This is the main goal of the work presented here which is structured in three phases, with the operational goal of having a working driver analyzer implemented in a car. The main question is: is it possible to make statements concerning the driver and his state by using vehicle data from the CAN Bus only? This paper describes the current state of driver analyzing, our overall system architecture, as well as future work. At the moment, we focus on detecting the driving style of a person

    Towards a Formalism-Based Toolkit for Automotive Applications

    Full text link
    The success of a number of projects has been shown to be significantly improved by the use of a formalism. However, there remains an open issue: to what extent can a development process based on a singular formal notation and method succeed. The majority of approaches demonstrate a low level of flexibility by attempting to use a single notation to express all of the different aspects encountered in software development. Often, these approaches leave a number of scalability issues open. We prefer a more eclectic approach. In our experience, the use of a formalism-based toolkit with adequate notations for each development phase is a viable solution. Following this principle, any specific notation is used only where and when it is really suitable and not necessarily over the entire software lifecycle. The approach explored in this article is perhaps slowly emerging in practice - we hope to accelerate its adoption. However, the major challenge is still finding the best way to instantiate it for each specific application scenario. In this work, we describe a development process and method for automotive applications which consists of five phases. The process recognizes the need for having adequate (and tailored) notations (Problem Frames, Requirements State Machine Language, and Event-B) for each development phase as well as direct traceability between the documents produced during each phase. This allows for a stepwise verification/validation of the system under development. The ideas for the formal development method have evolved over two significant case studies carried out in the DEPLOY project

    Development and Validation of Functional Model of a Cruise Control System

    Full text link
    Modern automobiles can be considered as a collection of many subsystems working with each other to realize safe transportation of the occupants. Innovative technologies that make transportation easier are increasingly incorporated into the automobile in the form of functionalities. These new functionalities in turn increase the complexity of the system framework present and traceability is lost or becomes very tricky in the process. This hugely impacts the development phase of an automobile, in which, the safety and reliability of the automobile design should be ensured. Hence, there is a need to ensure operational safety of the vehicles while adding new functionalities to the vehicle. To address this issue, functional models of such systems are created and analysed. The main purpose of developing a functional model is to improve the traceability and reusability of a system which reduces development time and cost. Operational safety of the system is ensured by analysing the system with respect to random and systematic failures and including safety mechanism to prevent such failures. This paper discusses the development and validation of a functional model of a conventional cruise control system in a passenger vehicle based on the ISO 26262 Road Vehicles - Functional Safety standard. A methodology for creating functional architectures and an architecture of a cruise control system developed using the methodology are presented.Comment: In Proceedings FESCA 2016, arXiv:1603.0837

    Introduction: German cities in the world city network

    Get PDF
    This introduction to the special issue “German cities in the world city network” provides an overview of the current status of research on urban systems in the knowledge economy, with a particular focus on the German urban system. The first part identifies the knowledge economy, particularly the requirements for geographical and relational proximity along the value chain, as a key driver of contemporary urban development. The second part clarifies the concept of polycentricity, distinguishing between its political and analytical roots, while considering its application on different spatial scales. Based on this discussion, the third part emphasizes the importance of relational thinking in analyzing polycentric urban systems and functional urban hierarchies. This is followed by an outline of the specific contribution of each paper to our understanding of the relational geographies of the German urban space-economy

    Automated precision passing system

    Get PDF
    Athletes are always seeking ways to improve their performance. Down time and a lack of capable throwers prevent athletic receivers from practicing their skills. We hope to aid athletes in receiving drills within their respective sports and increase practice efficiency. In order to achieve this, the machine has one major axis of rotation driven by a motor. This enables it to adjust where the ball is being thrown. Using an Arduino Uno coupled with a Roboteq AX1500 motor driver, the Automated Precision Passing System is able to throw a ball to a specified point in space by adjusting both the azimuth and ball-throwing motor speed. Our testing shows that our prototype has the ability to position itself in three different orientations as well as adjust the launch motor speed, but we were unable to launch the ball the original distance that we desired. From this project, we gained valuable knowledge in the areas of machine design, control systems, and project management. In order to continue the project and create a functional consumer product there are several improvements that need to be made to the system. The Automated Precision Passing System needs to be more rigid, have more power, and include more throwing positions

    Inverse Anticipating Synchronization

    Full text link
    We report a new type of chaos synchronization:inverse anticipating synchronization, where a time delay chaotic system can drive another system in such a way that the driven system anticipates the driver by synchronizing with its inverse future state. We extend the concept of inverse anticipating chaos synchronization to cascaded systems. We propose means for the experimental observation of inverse anticipating chaos synchronization in external cavity lasers.Comment: LaTex 6 pages, resubmitted to PR

    Functional Verification of Power Electronic Systems

    Get PDF
    This project is the final work of the degree in Industrial Electronics and Automatic Engineering. It has global concepts of electronics but it focuses in power electronic systems. There is a need for reliable testing systems to ensure the good functionality of power electronic systems. The constant evolution of this products requires the development of new testing techniques. This project aims to develop a new testing system to accomplish the functional verification of a new power electronic system manufactured on a company that is in the power electronic sector . This test system consists on two test bed platforms, one to test the control part of the systems and the other one to test their functionality. A software to perform the test is also designed. Finally, the testing protocol is presented. This design is validated and then implemented on a buck converter and an inverter that are manufactured at the company. The results show that the test system is reliable and is capable of testing the functional verification of the two power electronic system successfully. In summary, this design can be introduced in the power electronic production process to test the two products ensuring their reliability in the market
    corecore