2,983 research outputs found

    Modelling of subgrid-scale phenomena in supercritical transitional mixing layers: an a priori study

    Get PDF
    A database of transitional direct numerical simulation (DNS) realizations of a supercritical mixing layer is analysed for understanding small-scale behaviour and examining subgrid-scale (SGS) models duplicating that behaviour. Initially, the mixing layer contains a single chemical species in each of the two streams, and a perturbation promotes roll-up and a double pairing of the four spanwise vortices initially present. The database encompasses three combinations of chemical species, several perturbation wavelengths and amplitudes, and several initial Reynolds numbers specifically chosen for the sole purpose of achieving transition. The DNS equations are the Navier-Stokes, total energy and species equations coupled to a real-gas equation of state; the fluxes of species and heat include the Soret and Dufour effects. The large-eddy simulation (LES) equations are derived from the DNS ones through filtering. Compared to the DNS equations, two types of additional terms are identified in the LES equations: SGS fluxes and other terms for which either assumptions or models are necessary. The magnitude of all terms in the LES conservation equations is analysed on the DNS database, with special attention to terms that could possibly be neglected. It is shown that in contrast to atmospheric-pressure gaseous flows, there are two new terms that must be modelled: one in each of the momentum and the energy equations. These new terms can be thought to result from the filtering of the nonlinear equation of state, and are associated with regions of high density-gradient magnitude both found in DNS and observed experimentally in fully turbulent high-pressure flows. A model is derived for the momentum-equation additional term that performs well at small filter size but deteriorates as the filter size increases, highlighting the necessity of ensuring appropriate grid resolution in LES. Modelling approaches for the energy-equation additional term are proposed, all of which may be too computationally intensive in LES. Several SGS flux models are tested on an a priori basis. The Smagorinsky (SM) model has a poor correlation with the data, while the gradient (GR) and scale-similarity (SS) models have high correlations. Calibrated model coefficients for the GR and SS models yield good agreement with the SGS fluxes, although statistically, the coefficients are not valid over all realizations. The GR model is also tested for the variances entering the calculation of the new terms in the momentum and energy equations; high correlations are obtained, although the calibrated coefficients are not statistically significant over the entire database at fixed filter size. As a manifestation of the small-scale supercritical mixing peculiarities, both scalar-dissipation visualizations and the scalar-dissipation probability density functions (PDF) are examined. The PDF is shown to exhibit minor peaks, with particular significance for those at larger scalar dissipation values than the mean, thus significantly departing from the Gaussian behaviour

    Turbulent Diffusion and Turbulent Thermal Diffusion of Aerosols in Stratified Atmospheric Flows

    Full text link
    The paper analyzes the phenomenon of turbulent thermal diffusion in the Earth atmosphere, its relation to the turbulent diffusion and its potential impact on aerosol distribution. This phenomenon was predicted theoretically more than 10 years ago and detected recently in the laboratory experiments. This effect causes a non-diffusive flux of aerosols in the direction of the heat flux and results in formation of long-living aerosol layers in the vicinity of temperature inversions. We demonstrated that the theory of turbulent thermal diffusion explains the GOMOS aerosol observations near the tropopause (i.e., the observed shape of aerosol vertical profiles with elevated concentrations located almost symmetrically with respect to temperature profile). In combination with the derived expression for the dependence of the turbulent thermal diffusion ratio on the turbulent diffusion, these measurements yield an independent method for determining the coefficient of turbulent diffusion at the tropopause. We evaluated the impact of turbulent thermal diffusion to the lower-troposphere vertical profiles of aerosol concentration by means of numerical dispersion modelling, and found a regular upward forcing of aerosols with coarse particles affected stronger than fine aerosols.Comment: 19 pages, 10 figure

    An efficient surrogate model for emulation and physics extraction of large eddy simulations

    Full text link
    In the quest for advanced propulsion and power-generation systems, high-fidelity simulations are too computationally expensive to survey the desired design space, and a new design methodology is needed that combines engineering physics, computer simulations and statistical modeling. In this paper, we propose a new surrogate model that provides efficient prediction and uncertainty quantification of turbulent flows in swirl injectors with varying geometries, devices commonly used in many engineering applications. The novelty of the proposed method lies in the incorporation of known physical properties of the fluid flow as {simplifying assumptions} for the statistical model. In view of the massive simulation data at hand, which is on the order of hundreds of gigabytes, these assumptions allow for accurate flow predictions in around an hour of computation time. To contrast, existing flow emulators which forgo such simplications may require more computation time for training and prediction than is needed for conducting the simulation itself. Moreover, by accounting for coupling mechanisms between flow variables, the proposed model can jointly reduce prediction uncertainty and extract useful flow physics, which can then be used to guide further investigations.Comment: Submitted to JASA A&C

    Toward a hybrid dynamo model for the Milky Way

    Full text link
    (Abridged) Based on the rapidly increasing all-sky data of Faraday rotation measures and polarised synchrotron radiation, the Milky Way's magnetic field is now modelled with an unprecedented level of detail and complexity. We aim to complement this heuristic approach with a physically motivated, quantitative Galactic dynamo model -- a model that moreover allows for the evolution of the system as a whole, instead of just solving the induction equation for a fixed static disc. Building on the framework of mean-field magnetohydrodynamics and extending it to the realm of a hybrid evolution, we perform three-dimensional global simulations of the Galactic disc. Closure coefficients embodying the mean-field dynamo are calibrated against resolved box simulations of supernova-driven interstellar turbulence. The emerging dynamo solutions comprise a mixture of the dominant axisymmetric S0 mode, with even parity, and a subdominant A0 mode, with odd parity. Notably, such a superposition of modes creates a strong localised vertical field on one side of the Galactic disc. We moreover find significant radial pitch angles, which decay with radius -- explained by flaring of the disc. In accordance with previous work, magnetic instabilities appear to be restricted to the less-stirred outer Galactic disc. Their main effect is to create strong fields at large radii such that the radial scale length of the magnetic field increases from 4 kpc (for the case of a mean-field dynamo alone) to about 10 kpc in the hybrid models. There remain aspects (e.g., spiral arms, X-shaped halo fields, fluctuating fields) that are not captured by the current model and that will require further development towards a fully dynamical evolution. Nevertheless, the work presented demonstrates that a hybrid modelling of the Galactic dynamo is feasible and can serve as a foundation for future efforts.Comment: 12 pages, 12 figures, 2 tables, accepted for publication in A&

    Modest-2: A Summary

    Get PDF
    This is a summary paper of MODEST-2, a workshop held at the Astronomical Institute ``Anton Pannekoek'' in Amsterdam, 16-17 December 2002. MODEST is a loose collaboration of people interested in MOdelling DEnse STellar systems, particularly those interested in modelling these systems using all the available physics (stellar dynamics, stellar evolution, hydrodynamics and the interplay between the three) by defining interfaces between different codes. In this paper, we summarize 1) the main advances in this endeavour since MODEST-1; 2) the main science goals which can be and should be addressed by these types of simulations; and 3) the most pressing theoretical and modelling advances that we identified.Comment: Accepted by New Astronom

    Design and fabrication of a novel spinning fluidised bed

    Get PDF
    Existing vertical spinning fluidised bed (SFB) have several drawbacks, such as non-uniform radial and axial bed fluidisation, feeding and ash accumulation problems. The purpose of this research, therefore is to develop a prototype of the horizontal SFB combustor capable of overcoming these drawbacks. The scopes of the research include engineering design of the prototype, computational fluid dynamics (CFD) modelling and set-up/commissioning of the developed prototype. Under this research, a prototype of the horizontal SFB has been successfully developed and is able to overcome the inherent weakness in vertical SFB. The innovative secondary chamber provides more freeboard for more complete combustion and acts as particulate control device. The prototype is suitable for burning low-density materials (rice husk, fibrous materials), which are difficult to be burnt in conventional fluidised bed by imparting a higher centrifugal force. There is also no limit to the amount of air throughput and combustion is only limited by the kinetics in which each different type of waste burns. Results from the CFD modelling narrowed down the parameters to be tested on the SFB in future experimental works, as well as providing design improvements on the current SFB design. Due to its compactness and versatility in burning a wide range of waste, the SFB prototype has the potential to be utilised as small-scale on-site waste incineration facility and high-efficiency gas burner for high-loading waste gas streams in chemical plants or refineries. The whole system is mountable to a truck and can be transported to waste sources such as rice mills, sawmills, wastewater treatment plants to incinerate waste. The full performance on the developed SFB during combustion of various types of wastes is outside the scope of the current research and therefore, is subjected to future experimental works
    • …
    corecore