1,361 research outputs found

    A Fully Abstract Symbolic Semantics for Psi-Calculi

    Full text link
    We present a symbolic transition system and bisimulation equivalence for psi-calculi, and show that it is fully abstract with respect to bisimulation congruence in the non-symbolic semantics. A psi-calculus is an extension of the pi-calculus with nominal data types for data structures and for logical assertions representing facts about data. These can be transmitted between processes and their names can be statically scoped using the standard pi-calculus mechanism to allow for scope migrations. Psi-calculi can be more general than other proposed extensions of the pi-calculus such as the applied pi-calculus, the spi-calculus, the fusion calculus, or the concurrent constraint pi-calculus. Symbolic semantics are necessary for an efficient implementation of the calculus in automated tools exploring state spaces, and the full abstraction property means the semantics of a process does not change from the original

    Sigref – A Symbolic Bisimulation Tool Box

    Get PDF
    We present a uniform signature-based approach to compute the most popular bisimulations. Our approach is implemented symbolically using BDDs, which enables the handling of very large transition systems. Signatures for the bisimulations are built up from a few generic building blocks, which naturally correspond to efficient BDD operations. Thus, the definition of an appropriate signature is the key for a rapid development of algorithms for other types of bisimulation. We provide experimental evidence of the viability of this approach by presenting computational results for many bisimulations on real-world instances. The experiments show cases where our framework can handle state spaces efficiently that are far too large to handle for any tool that requires an explicit state space description. This work was partly supported by the German Research Council (DFG) as part of the Transregional Collaborative Research Center “Automatic Verification and Analysis of Complex Systems” (SFB/TR 14 AVACS). See www.avacs.org for more information

    Ackermann Encoding, Bisimulations, and OBDDs

    Full text link
    We propose an alternative way to represent graphs via OBDDs based on the observation that a partition of the graph nodes allows sharing among the employed OBDDs. In the second part of the paper we present a method to compute at the same time the quotient w.r.t. the maximum bisimulation and the OBDD representation of a given graph. The proposed computation is based on an OBDD-rewriting of the notion of Ackermann encoding of hereditarily finite sets into natural numbers.Comment: To appear on 'Theory and Practice of Logic Programming

    Language-based Abstractions for Dynamical Systems

    Get PDF
    Ordinary differential equations (ODEs) are the primary means to modelling dynamical systems in many natural and engineering sciences. The number of equations required to describe a system with high heterogeneity limits our capability of effectively performing analyses. This has motivated a large body of research, across many disciplines, into abstraction techniques that provide smaller ODE systems while preserving the original dynamics in some appropriate sense. In this paper we give an overview of a recently proposed computer-science perspective to this problem, where ODE reduction is recast to finding an appropriate equivalence relation over ODE variables, akin to classical models of computation based on labelled transition systems.Comment: In Proceedings QAPL 2017, arXiv:1707.0366

    Algebra, coalgebra, and minimization in polynomial differential equations

    Full text link
    We consider reasoning and minimization in systems of polynomial ordinary differential equations (ode's). The ring of multivariate polynomials is employed as a syntax for denoting system behaviours. We endow this set with a transition system structure based on the concept of Lie-derivative, thus inducing a notion of L-bisimulation. We prove that two states (variables) are L-bisimilar if and only if they correspond to the same solution in the ode's system. We then characterize L-bisimilarity algebraically, in terms of certain ideals in the polynomial ring that are invariant under Lie-derivation. This characterization allows us to develop a complete algorithm, based on building an ascending chain of ideals, for computing the largest L-bisimulation containing all valid identities that are instances of a user-specified template. A specific largest L-bisimulation can be used to build a reduced system of ode's, equivalent to the original one, but minimal among all those obtainable by linear aggregation of the original equations. A computationally less demanding approximate reduction and linearization technique is also proposed.Comment: 27 pages, extended and revised version of FOSSACS 2017 pape

    Challenges in Quantitative Abstractions for Collective Adaptive Systems

    Get PDF
    Like with most large-scale systems, the evaluation of quantitative properties of collective adaptive systems is an important issue that crosscuts all its development stages, from design (in the case of engineered systems) to runtime monitoring and control. Unfortunately it is a difficult problem to tackle in general, due to the typically high computational cost involved in the analysis. This calls for the development of appropriate quantitative abstraction techniques that preserve most of the system's dynamical behaviour using a more compact representation. This paper focuses on models based on ordinary differential equations and reviews recent results where abstraction is achieved by aggregation of variables, reflecting on the shortcomings in the state of the art and setting out challenges for future research.Comment: In Proceedings FORECAST 2016, arXiv:1607.0200

    Symblicit algorithms for optimal strategy synthesis in monotonic Markov decision processes

    Full text link
    When treating Markov decision processes (MDPs) with large state spaces, using explicit representations quickly becomes unfeasible. Lately, Wimmer et al. have proposed a so-called symblicit algorithm for the synthesis of optimal strategies in MDPs, in the quantitative setting of expected mean-payoff. This algorithm, based on the strategy iteration algorithm of Howard and Veinott, efficiently combines symbolic and explicit data structures, and uses binary decision diagrams as symbolic representation. The aim of this paper is to show that the new data structure of pseudo-antichains (an extension of antichains) provides another interesting alternative, especially for the class of monotonic MDPs. We design efficient pseudo-antichain based symblicit algorithms (with open source implementations) for two quantitative settings: the expected mean-payoff and the stochastic shortest path. For two practical applications coming from automated planning and LTL synthesis, we report promising experimental results w.r.t. both the run time and the memory consumption.Comment: In Proceedings SYNT 2014, arXiv:1407.493

    Efficient Modelling and Generation of Markov Automata (extended version)

    Get PDF
    This paper introduces a framework for the efficient modelling and generation of Markov automata. It consists of (1) the data-rich process-algebraic language MAPA, allowing concise modelling of systems with nondeterminism, probability and Markovian timing; (2) a restricted form of the language, the MLPPE, enabling easy state space generation and parallel composition; and (3) several syntactic reduction techniques on the MLPPE format, for generating equivalent but smaller models. Technically, the framework relies on an encoding of MAPA into the existing prCRL language for probabilistic automata. First, we identify a class of transformations on prCRL that can be lifted to the Markovian realm using our encoding. Then, we employ this result to reuse prCRL's linearisation procedure to transform any MAPA specification to an equivalent MLPPE, and to lift three prCRL reduction techniques to MAPA. Additionally, we define two novel reduction techniques for MLPPEs. All our techniques treat data as well as Markovian and interactive behaviour in a fully symbolic manner, working on specifications instead of models and thus reducing state spaces prior to their construction. The framework has been implemented in our tool SCOOP, and a case study on polling systems and mutual exclusion protocols shows its practical applicability

    Supporting ODP - Translating LOTOS to Z

    Get PDF
    This paper describes a translation of full LOTOS into Z. A common semantic model is defined and the translation is proved correct with respect to the semantics. The motivation for such a translation is the use of multiple viewpoints for specifying complex systems defined by the reference model of the Open Distributed Processing (ODP) standardization initiative. The postscript version available here is an extended version of what was published
    corecore