10 research outputs found

    Computing Stable Conclusions under the Weakest-Link Principle in the ASPIC+ Argumentation Formalism

    Get PDF
    Peer reviewe

    A framework for relating, implementing and verifying argumentation models and their translations

    Get PDF
    Computational argumentation theory deals with the formalisation of argument structure, conflict between arguments and domain-specific constructs, such as proof standards, epistemic probabilities or argument schemes. However, despite these practical components, there is a lack of implementations and implementation methods available for most structured models of argumentation and translations between them. This thesis addresses this problem, by constructing a general framework for relating, implementing and formally verifying argumentation models and translations between them, drawing from dependent type theory and the Curry-Howard correspondence. The framework provides mathematical tools and programming methodologies to implement argumentation models, allowing programmers and argumentation theorists to construct implementations that are closely related to the mathematical definitions. It furthermore provides tools that, without much effort on the programmer's side, can automatically construct counter-examples to desired properties, while finally providing methodologies that can prove formal correctness of the implementation in a theorem prover. The thesis consists of various use cases that demonstrate the general approach of the framework. The Carneades argumentation model, Dung's abstract argumentation frameworks and a translation between them, are implemented in the functional programming language Haskell. Implementations of formal properties of the translation are provided together with a formalisation of AFs in the theorem prover, Agda. The result is a verified pipeline, from the structured model Carneades into existing efficient SAT-based implementations of Dung's AFs. Finally, the ASPIC+ model for argumentation is generalised to incorporate content orderings, weight propagation and argument accrual. The framework is applied to provide a translation from this new model into Dung's AFs, together with a complete implementation

    A framework for relating, implementing and verifying argumentation models and their translations

    Get PDF
    Computational argumentation theory deals with the formalisation of argument structure, conflict between arguments and domain-specific constructs, such as proof standards, epistemic probabilities or argument schemes. However, despite these practical components, there is a lack of implementations and implementation methods available for most structured models of argumentation and translations between them. This thesis addresses this problem, by constructing a general framework for relating, implementing and formally verifying argumentation models and translations between them, drawing from dependent type theory and the Curry-Howard correspondence. The framework provides mathematical tools and programming methodologies to implement argumentation models, allowing programmers and argumentation theorists to construct implementations that are closely related to the mathematical definitions. It furthermore provides tools that, without much effort on the programmer's side, can automatically construct counter-examples to desired properties, while finally providing methodologies that can prove formal correctness of the implementation in a theorem prover. The thesis consists of various use cases that demonstrate the general approach of the framework. The Carneades argumentation model, Dung's abstract argumentation frameworks and a translation between them, are implemented in the functional programming language Haskell. Implementations of formal properties of the translation are provided together with a formalisation of AFs in the theorem prover, Agda. The result is a verified pipeline, from the structured model Carneades into existing efficient SAT-based implementations of Dung's AFs. Finally, the ASPIC+ model for argumentation is generalised to incorporate content orderings, weight propagation and argument accrual. The framework is applied to provide a translation from this new model into Dung's AFs, together with a complete implementation

    Proceedings of the IJCAI-09 Workshop on Nonmonotonic Reasoning, Action and Change

    Full text link
    Copyright in each article is held by the authors. Please contact the authors directly for permission to reprint or use this material in any form for any purpose.The biennial workshop on Nonmonotonic Reasoning, Action and Change (NRAC) has an active and loyal community. Since its inception in 1995, the workshop has been held seven times in conjunction with IJCAI, and has experienced growing success. We hope to build on this success again this eighth year with an interesting and fruitful day of discussion. The areas of reasoning about action, non-monotonic reasoning and belief revision are among the most active research areas in Knowledge Representation, with rich inter-connections and practical applications including robotics, agentsystems, commonsense reasoning and the semantic web. This workshop provides a unique opportunity for researchers from all three fields to be brought together at a single forum with the prime objectives of communicating important recent advances in each field and the exchange of ideas. As these fundamental areas mature it is vital that researchers maintain a dialog through which they can cooperatively explore common links. The goal of this workshop is to work against the natural tendency of such rapidly advancing fields to drift apart into isolated islands of specialization. This year, we have accepted ten papers authored by a diverse international community. Each paper has been subject to careful peer review on the basis of innovation, significance and relevance to NRAC. The high quality selection of work could not have been achieved without the invaluable help of the international Program Committee. A highlight of the workshop will be our invited speaker Professor Hector Geffner from ICREA and UPF in Barcelona, Spain, discussing representation and inference in modern planning. Hector Geffner is a world leader in planning, reasoning, and knowledge representation; in addition to his many important publications, he is a Fellow of the AAAI, an associate editor of the Journal of Artificial Intelligence Research and won an ACM Distinguished Dissertation Award in 1990

    Deductive Systems in Traditional and Modern Logic

    Get PDF
    The book provides a contemporary view on different aspects of the deductive systems in various types of logics including term logics, propositional logics, logics of refutation, non-Fregean logics, higher order logics and arithmetic

    Logical models for bounded reasoners

    Get PDF
    This dissertation aims at the logical modelling of aspects of human reasoning, informed by facts on the bounds of human cognition. We break down this challenge into three parts. In Part I, we discuss the place of logical systems for knowledge and belief in the Rationality Debate and we argue for systems that formalize an alternative picture of rationality -- one wherein empirical facts have a key role (Chapter 2). In Part II, we design logical models that encode explicitly the deductive reasoning of a single bounded agent and the variety of processes underlying it. This is achieved through the introduction of a dynamic, resource-sensitive, impossible-worlds semantics (Chapter 3). We then show that this type of semantics can be combined with plausibility models (Chapter 4) and that it can be instrumental in modelling the logical aspects of System 1 (“fast”) and System 2 (“slow”) cognitive processes (Chapter 5). In Part III, we move from single- to multi-agent frameworks. This unfolds in three directions: (a) the formation of beliefs about others (e.g. due to observation, memory, and communication), (b) the manipulation of beliefs (e.g. via acts of reasoning about oneself and others), and (c) the effect of the above on group reasoning. These questions are addressed, respectively, in Chapters 6, 7, and 8. We finally discuss directions for future work and we reflect on the contribution of the thesis as a whole (Chapter 9)

    19th Brazilian Logic Conference: Book of Abstracts

    Get PDF
    This is the book of abstracts of the 19th Brazilian Logic Conferences. The Brazilian Logic Conferences (EBL) is one of the most traditional logic conferences in South America. Organized by the Brazilian Logic Society (SBL), its main goal is to promote the dissemination of research in logic in a broad sense. It has been occurring since 1979, congregating logicians of different fields — mostly philosophy, mathematics and computer science — and with different backgrounds — from undergraduate students to senior researchers. The meeting is an important moment for the Brazilian and South American logical community to join together and discuss recent developments of the field. The areas of logic covered in the conference spread over foundations and philosophy of science, analytic philosophy, philosophy and history of logic, mathematics, computer science, informatics, linguistics and artificial intelligence. Previous editions of the EBL have been a great success, attracting researchers from all over Latin America and elsewhere. The 19th edition of EBL takes place from May 6-10, 2019, in the beautiful city of João Pessoa, at the northeast coast of Brazil. It is conjointly organized by Federal University of Paraíba (UFPB), whose main campus is located in João Pessoa, Federal University of Campina Grande (UFCG), whose main campus is located in the nearby city of Campina Grande (the second-largest city in Paraíba state) and SBL. It is sponsored by UFPB, UFCG, the Brazilian Council for Scientific and Technological Development (CNPq) and the State Ministry of Education, Science and Technology of Paraíba. It takes place at Hotel Luxxor Nord Tambaú, privileged located right in front Tambaú beach, one of João Pessoa’s most famous beaches

    Logic and Interactive RAtionality. Yearbook 2009

    Get PDF

    ISIPTA'07: Proceedings of the Fifth International Symposium on Imprecise Probability: Theories and Applications

    Get PDF
    B

    Automated Reasoning

    Get PDF
    This volume, LNAI 13385, constitutes the refereed proceedings of the 11th International Joint Conference on Automated Reasoning, IJCAR 2022, held in Haifa, Israel, in August 2022. The 32 full research papers and 9 short papers presented together with two invited talks were carefully reviewed and selected from 85 submissions. The papers focus on the following topics: Satisfiability, SMT Solving,Arithmetic; Calculi and Orderings; Knowledge Representation and Jutsification; Choices, Invariance, Substitutions and Formalization; Modal Logics; Proofs System and Proofs Search; Evolution, Termination and Decision Prolems. This is an open access book
    corecore