908 research outputs found

    Communication channel analysis and real time compressed sensing for high density neural recording devices

    Get PDF
    Next generation neural recording and Brain- Machine Interface (BMI) devices call for high density or distributed systems with more than 1000 recording sites. As the recording site density grows, the device generates data on the scale of several hundred megabits per second (Mbps). Transmitting such large amounts of data induces significant power consumption and heat dissipation for the implanted electronics. Facing these constraints, efficient on-chip compression techniques become essential to the reduction of implanted systems power consumption. This paper analyzes the communication channel constraints for high density neural recording devices. This paper then quantifies the improvement on communication channel using efficient on-chip compression methods. Finally, This paper describes a Compressed Sensing (CS) based system that can reduce the data rate by > 10x times while using power on the order of a few hundred nW per recording channel

    A 16-Channel Neural Recording System-on-Chip With CHT Feature Extraction Processor in 65-nm CMOS

    Get PDF
    Next-generation invasive neural interfaces require fully implantable wireless systems that can record from a large number of channels simultaneously. However, transferring the recorded data from the implant to an external receiver emerges as a significant challenge due to the high throughput. To address this challenge, this article presents a neural recording system-on-chip that achieves high resource and wireless bandwidth efficiency by employing on-chip feature extraction. Energy-area-efficient 10-bit 20-kS/s front end amplifies and digitizes the neural signals within the local field potential (LFP) and action potential (AP) bands. The raw data from each channel are decomposed into spectral features using a compressed Hadamard transform (CHT) processor. The selection of the features to be computed is tailored through a machine learning algorithm such that the overall data rate is reduced by 80% without compromising classification performance. Moreover, the CHT feature extractor allows waveform reconstruction on the receiver side for monitoring or additional post-processing. The proposed approach was validated through in vivo and off-line experiments. The prototype fabricated in 65-nm CMOS also includes wireless power and data receiver blocks to demonstrate the energy and area efficiency of the complete system. The overall signal chain consumes 2.6 μW and occupies 0.021 mm² per channel, pointing toward its feasibility for 1000-channel single-die neural recording systems

    Development of Advanced Closed-Loop Brain Electrophysiology Systems for Freely Behaving Rodents

    Full text link
    [ES] La electrofisiología extracelular es una técnica ampliamente usada en investigación neurocientífica, la cual estudia el funcionamiento del cerebro mediante la medición de campos eléctricos generados por la actividad neuronal. Esto se realiza a través de electrodos implantados en el cerebro y conectados a dispositivos electrónicos para amplificación y digitalización de las señales. De los muchos modelos animales usados en experimentación, las ratas y los ratones se encuentran entre las especies más comúnmente utilizadas. Actualmente, la experimentación electrofisiológica busca condiciones cada vez más complejas, limitadas por la tecnología de los dispositivos de adquisición. Dos aspectos son de particular interés: Realimentación de lazo cerrado y comportamiento en condiciones naturales. En esta tesis se presentan desarrollos con el objetivo de mejorar diferentes facetas de estos dos problemas. La realimentación en lazo cerrado se refiere a todas las técnicas en las que los estímulos son producidos en respuesta a un evento generado por el animal. La latencia debe ajustarse a las escalas temporales bajo estudio. Los sistemas modernos de adquisición presentan latencias en el orden de los 10ms. Sin embargo, para responder a eventos rápidos, como pueden ser los potenciales de acción, se requieren latencias por debajo de 1ms. Además, los algoritmos para detectar los eventos o generar los estímulos pueden ser complejos, integrando varias entradas de datos en tiempo real. Integrar el desarrollo de dichos algoritmos en las herramientas de adquisición forma parte del diseño experimental. Para estudiar comportamientos naturales, los animales deben ser capaces de moverse libremente en entornos emulando condiciones naturales. Experimentos de este tipo se ven dificultados por la naturaleza cableada de los sistemas de adquisición. Otras restricciones físicas, como el peso de los implantes o limitaciones en el consumo de energía, pueden también afectar a la duración de los experimentos, limitándola. La experimentación puede verse enriquecida cuando los datos electrofisiológicos se ven complementados con múltiples fuentes distintas. Por ejemplo, seguimiento de los animales o miscroscopía. Herramientas capaces de integrar datos independientemente de su origen abren la puerta a nuevas posibilidades. Los avances tecnológicos presentados abordan estas limitaciones. Se han diseñado dispositivos con latencias de lazo cerrado inferiores a 200us que permiten combinar cientos de canales electrofisiológicos con otras fuentes de datos, como vídeo o seguimiento. El software de control para estos dispositivos se ha diseñado manteniendo la flexibilidad como objetivo. Se han desarrollado interfaces y estándares de naturaleza abierta para incentivar el desarrollo de herramientas compatibles entre ellas. Para resolver los problemas de cableado se siguieron dos métodos distintos. Uno fue el desarrollo de headstages ligeros combinados con cables coaxiales ultra finos y conmutadores activos, gracias al seguimiento de animales. Este desarrollo permite reducir el esfuerzo impuesto a los animales, permitiendo espacios amplios y experimentos de larga duración, al tiempo que permite el uso de headstages con características avanzadas. Paralelamente se desarrolló un tipo diferente de headstage, con tecnología inalámbrica. Se creó un algoritmo de compresión digital especializado capaz de reducir el ancho de banda a menos del 65% de su tamaño original, ahorrando energía. Esta reducción permite baterías más ligeras y mayores tiempos de operación. El algoritmo fue diseñado para ser capaz de ser implementado en una gran variedad de dispositivos. Los desarrollos presentados abren la puerta a nuevas posibilidades experimentales para la neurociencia, combinando adquisición elextrofisiológica con estudios conductuales en condiciones naturales y estímulos complejos en tiempo real.[CA] L'electrofisiologia extracel·lular és una tècnica àmpliament utilitzada en la investigació neurocientífica, la qual permet estudiar el funcionament del cervell mitjançant el mesurament de camps elèctrics generats per l'activitat neuronal. Això es realitza a través d'elèctrodes implantats al cervell, connectats a dispositius electrònics per a l'amplificació i digitalització dels senyals. Dels molts models animals utilitzats en experimentació electrofisiològica, les rates i els ratolins es troben entre les espècies més utilitzades. Actualment, l'experimentació electrofisiològica busca condicions cada vegada més complexes, limitades per la tecnologia dels dispositius d'adquisició. Dos aspectes són d'especial interès: La realimentació de sistemes de llaç tancat i el comportament en condicions naturals. En aquesta tesi es presenten desenvolupaments amb l'objectiu de millorar diferents aspectes d'aquestos dos problemes. La realimentació de sistemes de llaç tancat es refereix a totes aquestes tècniques on els estímuls es produeixen en resposta a un esdeveniment generat per l'animal. La latència ha d'ajustar-se a les escales temporals sota estudi. Els sistemes moderns d'adquisició presenten latències en l'ordre dels 10ms. No obstant això, per a respondre a esdeveniments ràpids, com poden ser els potencials d'acció, es requereixen latències per davall de 1ms. A més a més, els algoritmes per a detectar els esdeveniments o generar els estímuls poden ser complexos, integrant varies entrades de dades a temps real. Integrar el desenvolupament d'aquests algoritmes en les eines d'adquisició forma part del disseny dels experiments. Per a estudiar comportaments naturals, els animals han de ser capaços de moure's lliurement en ambients emulant condicions naturals. Aquestos experiments es veuen limitats per la natura cablejada dels sistemes d'adquisició. Altres restriccions físiques, com el pes dels implants o el consum d'energia, poden també limitar la duració dels experiments. L'experimentació es pot enriquir quan les dades electrofisiològiques es complementen amb dades de múltiples fonts. Per exemple, el seguiment d'animals o microscòpia. Eines capaces d'integrar dades independentment del seu origen obrin la porta a noves possibilitats. Els avanços tecnològics presentats tracten aquestes limitacions. S'han dissenyat dispositius amb latències de llaç tancat inferiors a 200us que permeten combinar centenars de canals electrofisiològics amb altres fonts de dades, com vídeo o seguiment. El software de control per a aquests dispositius s'ha dissenyat mantenint la flexibilitat com a objectiu. S'han desenvolupat interfícies i estàndards de naturalesa oberta per a incentivar el desenvolupament d'eines compatibles entre elles. Per a resoldre els problemes de cablejat es van seguir dos mètodes diferents. Un va ser el desenvolupament de headstages lleugers combinats amb cables coaxials ultra fins i commutadors actius, gràcies al seguiment d'animals. Aquest desenvolupament permet reduir al mínim l'esforç imposat als animals, permetent espais amplis i experiments de llarga durada, al mateix temps que permet l'ús de headstages amb característiques avançades. Paral·lelament es va desenvolupar un tipus diferent de headstage, amb tecnologia sense fil. Es va crear un algorisme de compressió digital especialitzat capaç de reduir l'amplada de banda a menys del 65% de la seua grandària original, estalviant energia. Aquesta reducció permet bateries més lleugeres i majors temps d'operació. L'algorisme va ser dissenyat per a ser capaç de ser implementat a una gran varietat de dispositius. Els desenvolupaments presentats obrin la porta a noves possibilitats experimentals per a la neurociència, combinant l'adquisició electrofisiològica amb estudis conductuals en condicions naturals i estímuls complexos en temps real.[EN] Extracellular electrophysiology is a technique widely used in neuroscience research. It can offer insights on how the brain works by measuring the electrical fields generated by neural activity. This is done through electrodes implanted in the brain and connected to amplification and digitization electronic circuitry. Of the many animal models used in electrophysiology experimentation, rodents such as rats and mice are among the most popular species. Modern electrophysiology experiments seek increasingly complex conditions that are limited by acquisition hardware technology. Two particular aspects are of special interest: Closed-loop feedback and naturalistic behavior. In this thesis, we present developments aiming to improve on different facets of these two problems. Closed-loop feedback encompasses all techniques in which stimuli is produced in response of an event generated by the animal. Latency, the time between trigger event and stimuli generation, must adjust to the biological timescale being studied. While modern acquisition systems feature latencies in the order of 10ms, response to fast events such as high-frequency electrical transients created by neuronal activity require latencies under 1ms1ms. In addition, algorithms for triggering or generating closed-loop stimuli can be complex, integrating multiple inputs in real-time. Integration of algorithm development into acquisition tools becomes an important part of experiment design. For electrophysiology experiments featuring naturalistic behavior, animals must be able to move freely in ecologically meaningful environments, mimicking natural conditions. Experiments featuring elements such as large arenaa, environmental objects or the presence of another animals are, however, hindered by the wired nature of acquisition systems. Other physical constraints, such as implant weight or power restrictions can also affect experiment time, limiting their duration. Beyond the technical limits, complex experiments are enriched when electrophysiology data is integrated with multiple sources, for example animal tracking or brain microscopy. Tools allowing mixing data independently of the source open new experimental possibilities. The technological advances presented on this thesis addresses these topics. We have designed devices with closed-loop latencies under 200us while featuring high-bandwidth interfaces. These allow the simultaneous acquisition of hundreds of electrophysiological channels combined with other heterogeneous data sources, such as video or tracking. The control software for these devices was designed with flexibility in mind, allowing easy implementation of closed-loop algorithms. Open interface standards were created to encourage the development of interoperable tools for experimental data integration. To solve wiring issues in behavioral experiments, we followed two different approaches. One was the design of light headstages, coupled with ultra-thin coaxial cables and active commutator technology, making use of animal tracking. This allowed to reduce animal strain to a minimum allowing large arenas and prolonged experiments with advanced headstages. A different, wireless headstage was also developed. We created a digital compression algorithm specialized for neural electrophysiological signals able to reduce data bandwidth to less than 65.5% its original size without introducing distortions. Bandwidth has a large effect on power requirements. Thus, this reduction allows for lighter batteries and extended operational time. The algorithm is designed to be able to be implemented in a wide variety of devices, requiring low hardware resources and adding negligible power requirements to a system. Combined, the developments we present open new possibilities for neuroscience experiments combining electrophysiology acquisition with natural behaviors and complex, real-time, stimuli.The research described in this thesis was carried out at the Polytechnic University of Valencia (Universitat Politècnica de València), Valencia, Spain in an extremely close collaboration with the Neuroscience Institute - Spanish National Research Council - Miguel Hernández University (Instituto de Neurociencias - Consejo Superior de Investigaciones Cientí cas - Universidad Miguel Hernández), San Juan de Alicante, Spain. The projects described in chapters 3 and 4 were developed in collabo- ration with, and funded by, Open Ephys, Cambridge, MA, USA and OEPS - Eléctronica e produção, unipessoal lda, Algés, Portugal.Cuevas López, A. (2021). Development of Advanced Closed-Loop Brain Electrophysiology Systems for Freely Behaving Rodents [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/179718TESI

    A Closed-Loop Bidirectional Brain-Machine Interface System For Freely Behaving Animals

    Get PDF
    A brain-machine interface (BMI) creates an artificial pathway between the brain and the external world. The research and applications of BMI have received enormous attention among the scientific community as well as the public in the past decade. However, most research of BMI relies on experiments with tethered or sedated animals, using rack-mount equipment, which significantly restricts the experimental methods and paradigms. Moreover, most research to date has focused on neural signal recording or decoding in an open-loop method. Although the use of a closed-loop, wireless BMI is critical to the success of an extensive range of neuroscience research, it is an approach yet to be widely used, with the electronics design being one of the major bottlenecks. The key goal of this research is to address the design challenges of a closed-loop, bidirectional BMI by providing innovative solutions from the neuron-electronics interface up to the system level. Circuit design innovations have been proposed in the neural recording front-end, the neural feature extraction module, and the neural stimulator. Practical design issues of the bidirectional neural interface, the closed-loop controller and the overall system integration have been carefully studied and discussed.To the best of our knowledge, this work presents the first reported portable system to provide all required hardware for a closed-loop sensorimotor neural interface, the first wireless sensory encoding experiment conducted in freely swimming animals, and the first bidirectional study of the hippocampal field potentials in freely behaving animals from sedation to sleep. This thesis gives a comprehensive survey of bidirectional BMI designs, reviews the key design trade-offs in neural recorders and stimulators, and summarizes neural features and mechanisms for a successful closed-loop operation. The circuit and system design details are presented with bench testing and animal experimental results. The methods, circuit techniques, system topology, and experimental paradigms proposed in this work can be used in a wide range of relevant neurophysiology research and neuroprosthetic development, especially in experiments using freely behaving animals

    Neuroengineering Tools/Applications for Bidirectional Interfaces, Brain–Computer Interfaces, and Neuroprosthetic Implants – A Review of Recent Progress

    Get PDF
    The main focus of this review is to provide a holistic amalgamated overview of the most recent human in vivo techniques for implementing brain–computer interfaces (BCIs), bidirectional interfaces, and neuroprosthetics. Neuroengineering is providing new methods for tackling current difficulties; however neuroprosthetics have been studied for decades. Recent progresses are permitting the design of better systems with higher accuracies, repeatability, and system robustness. Bidirectional interfaces integrate recording and the relaying of information from and to the brain for the development of BCIs. The concepts of non-invasive and invasive recording of brain activity are introduced. This includes classical and innovative techniques like electroencephalography and near-infrared spectroscopy. Then the problem of gliosis and solutions for (semi-) permanent implant biocompatibility such as innovative implant coatings, materials, and shapes are discussed. Implant power and the transmission of their data through implanted pulse generators and wireless telemetry are taken into account. How sensation can be relayed back to the brain to increase integration of the neuroengineered systems with the body by methods such as micro-stimulation and transcranial magnetic stimulation are then addressed. The neuroprosthetic section discusses some of the various types and how they operate. Visual prosthetics are discussed and the three types, dependant on implant location, are examined. Auditory prosthetics, being cochlear or cortical, are then addressed. Replacement hand and limb prosthetics are then considered. These are followed by sections concentrating on the control of wheelchairs, computers and robotics directly from brain activity as recorded by non-invasive and invasive techniques

    The rise of flexible electronics in neuroscience, from materials selection to in vitro and in vivo applications

    Get PDF
    Neuroscience deals with one of the most complicate system we can study: the brain. The huge amount of connections among the cells and the different phenomena occurring at different scale give rise to a continuous flow of data that have to be collected, analyzed and interpreted. Neuroscientists try to interrogate this complexity to find basic principles underlying brain electrochemical signalling and human/animal behaviour to disclose the mechanisms that trigger neurodegenerative diseases and to understand how restoring damaged brain circuits. The main tool to perform these tasks is a neural interface, a system able to interact with brain tissue at different levels to provide a uni/bidirectional communication path. Recently, breakthroughs coming from various disciplines have been combined to enforce features and potentialities of neural interfaces. Among the different findings, flexible electronics is playing a pivotal role in revolutionizing neural interfaces. In this work, we review the most recent advances in the fabrication of neural interfaces based on flexible electronics. We define challenges and issues to be solved for the application of such platforms and we discuss the different parts of the system regarding improvements in materials selection and breakthrough in applications both for in vitro and in vivo tests

    Bioelectronic Sensor Nodes for Internet of Bodies

    Full text link
    Energy-efficient sensing with Physically-secure communication for bio-sensors on, around and within the Human Body is a major area of research today for development of low-cost healthcare, enabling continuous monitoring and/or secure, perpetual operation. These devices, when used as a network of nodes form the Internet of Bodies (IoB), which poses certain challenges including stringent resource constraints (power/area/computation/memory), simultaneous sensing and communication, and security vulnerabilities as evidenced by the DHS and FDA advisories. One other major challenge is to find an efficient on-body energy harvesting method to support the sensing, communication, and security sub-modules. Due to the limitations in the harvested amount of energy, we require reduction of energy consumed per unit information, making the use of in-sensor analytics/processing imperative. In this paper, we review the challenges and opportunities in low-power sensing, processing and communication, with possible powering modalities for future bio-sensor nodes. Specifically, we analyze, compare and contrast (a) different sensing mechanisms such as voltage/current domain vs time-domain, (b) low-power, secure communication modalities including wireless techniques and human-body communication, and (c) different powering techniques for both wearable devices and implants.Comment: 30 pages, 5 Figures. This is a pre-print version of the article which has been accepted for Publication in Volume 25 of the Annual Review of Biomedical Engineering (2023). Only Personal Use is Permitte

    Ensemble approach on enhanced compressed noise EEG data signal in wireless body area sensor network

    Get PDF
    The Wireless Body Area Sensor Network (WBASN) is used for communication among sensor nodes operating on or inside the human body in order to monitor vital body parameters and movements. One of the important applications of WBASN is patients’ healthcare monitoring of chronic diseases such as epileptic seizure. Normally, epileptic seizure data of the electroencephalograph (EEG) is captured and compressed in order to reduce its transmission time. However, at the same time, this contaminates the overall data and lowers classification accuracy. The current work also did not take into consideration that large size of collected EEG data. Consequently, EEG data is a bandwidth intensive. Hence, the main goal of this work is to design a unified compression and classification framework for delivery of EEG data in order to address its large size issue. EEG data is compressed in order to reduce its transmission time. However, at the same time, noise at the receiver side contaminates the overall data and lowers classification accuracy. Another goal is to reconstruct the compressed data and then recognize it. Therefore, a Noise Signal Combination (NSC) technique is proposed for the compression of the transmitted EEG data and enhancement of its classification accuracy at the receiving side in the presence of noise and incomplete data. The proposed framework combines compressive sensing and discrete cosine transform (DCT) in order to reduce the size of transmission data. Moreover, Gaussian noise model of the transmission channel is practically implemented to the framework. At the receiving side, the proposed NSC is designed based on weighted voting using four classification techniques. The accuracy of these techniques namely Artificial Neural Network, Naïve Bayes, k-Nearest Neighbour, and Support Victor Machine classifiers is fed to the proposed NSC. The experimental results showed that the proposed technique exceeds the conventional techniques by achieving the highest accuracy for noiseless and noisy data. Furthermore, the framework performs a significant role in reducing the size of data and classifying both noisy and noiseless data. The key contributions are the unified framework and proposed NSC, which improved accuracy of the noiseless and noisy EGG large data. The results have demonstrated the effectiveness of the proposed framework and provided several credible benefits including simplicity, and accuracy enhancement. Finally, the research improves clinical information about patients who not only suffer from epilepsy, but also neurological disorders, mental or physiological problems
    corecore