81 research outputs found

    Design And Implementation Of An X-Band Passive Rfid Tag

    Get PDF
    This research presents a novel fully integrated energy harvester, matching network, matching network,matching network, matching network,matching network, matching network, matching network, multi-stage RF-DC rectifier, mode selector, RC oscillator, LC oscillator, and X-band power amplifier implemented in IBM 0.18-µm RF CMOS technology. We investigated different matching schemes, antennas, and rectifiers with focus on the interaction between building blocks. Currently the power amplifier gives the maximum output power of 5.23 dBm at 9.1GHz. The entire RFID tag circuit was designed to operate in low power consumption. Voltage sensor circuit which generates the enable signal was designed to operate in very low current. All the test blocks of the RFID tag were tested. The smaller size and the cost of the RFID tag are critical for widespread adoption of the technology. The cost of the RFID tag can be lowered by implementing an on-chip antenna. We were able to develop, fabricate, and implement a fully integrated RFID tag in a smaller size (3 mm X 1.5 mm) than the existing tags. With further modifications, this could be used as a commercial low cost RFID tag

    A 868MHz CMOS RF-DC Power Converter With -17dBm Input Power Sensitivity and Efficiency Higher Than 40% Over 14dB Input Power Range

    Get PDF
    In this paper we present a novel CMOS RF-DC converter circuit, operating at 868MHz, for RFID and remote powering applications. The novel reconfigurable architecture of the converter allows the circuit to operate over a very wide input power range with very high efficiency compared with previous art works. Prototypes realized in STM 0.130ìm CMOS technology provide a regulated output voltage ~2V with a -17dBm input power sensitivity. The circuit efficiency, higher than 40% over a 14dB input power range, peaks at 60%

    Hybrid RFID-Based System Using Active Two-Way Tags

    Get PDF
    Ultra High Frequency (UHF) Radio Frequency Identification (RFID) is a promising technology that has experienced tremendous growth by revolutionizing a variety of industry sectors and applications, such as automated data management, the tracking of a specified object, highway toll collection, library inventory tracking, multi-level asset tracking, and airport baggage control. For many RFID applications, it is desired to maximize the operating distance or read range. This thesis proposes a design of an analog front-end architecture and the baseband controller for a Class-4 Active Two-Way (C4-ATW) RFID tag in order to maximize or increase the tracking range by implementing a tag-hopping technique. In tag-hopping, C4-ATW RFID tags power their own communication with other C4-ATW RFID tags and existing passive RFID tag while the reader\u27s functionality remains unchanged. The simulation results indicate that the C4-ATW RFID tag can detect a minimum incident RF input power of -20 dBm at a 120 Kbps data rate. For -20 dBm input power; the achieved read range between a reader and tag is 36.7 meters at 4 W of reader power and between two tags, the read range is 2.15 meters at 25 mW tag power. Combined, the analog front end and baseband controller consume 50.3 mW of power and the area of the chip, including pads, is 854 µm x 542 µm

    A low power signal front-end for passive UHF RFID transponders with a new clock recovery circuit.

    Get PDF
    Chan, Chi Fat.Thesis (M.Phil.)--Chinese University of Hong Kong, 2009.Includes bibliographical references.Abstracts in English and Chinese.Abstract --- p.2摘要 --- p.5Acknowledgement --- p.7Table of Contents --- p.9List of Figures --- p.11List of Tables --- p.14Chapter 1. --- Introduction --- p.15Chapter 1.2. --- Research Objectives --- p.16Chapter 1.3. --- Thesis Organization --- p.18Chapter 1.4. --- References --- p.19Chapter 2. --- Overview of Passive UHF RFID Transponders --- p.20Chapter 2.1. --- Types of RFID Transponders and Design Challenges of Passive RFID Transponder --- p.20Chapter 2.2. --- Selection of Carrier Frequency --- p.22Chapter 2.3. --- Description of Transponder Construction --- p.22Chapter 2.3.1. --- Power-Generating Circuits --- p.23Chapter 2.3.2. --- Base Band Processor --- p.28Chapter 2.3.3. --- Signal Front-End --- p.29Chapter 2.4. --- Summary --- p.30Chapter 2.5. --- References --- p.31Chapter 3. --- ASK Demodulator for EPC C-l G-2 Transponder --- p.32Chapter 3.1. --- ASK Demodulator Design Considerations --- p.32Chapter 3.1.1. --- Recovered Envelope Distortion --- p.32Chapter 3.1.2. --- Input Power Level Considerations --- p.34Chapter 3.1.3. --- Input RF power Intercepted by ASK Demodulator --- p.36Chapter 3.2. --- ASK Demodulator Design From [3-4] --- p.36Chapter 3.2.1. --- Envelope Waveform Recovery Design --- p.37Chapter 3.2.1.1. --- Voltage Multiplier Branch for Generating Venv --- p.39Chapter 3.2.1.2. --- Voltage Multiplier Branch for Generating Vref --- p.41Chapter 3.2.2. --- Design Considerations for Sensitivity of ASK Demodulator --- p.41Chapter 3.2.3. --- RF Input Power Sharing with Voltage Multiplier --- p.44Chapter 3.2.4. --- ASK Demodulator and Voltage Multiplier Integrated Estimations for Maximum RF Power Input --- p.47Chapter 3.2.5. --- Measurement result and Discussion --- p.49Chapter 3.3. --- Proposed Envelope Detector Circuit --- p.52Chapter 3.3.1. --- Sensitivity Estimation --- p.52Chapter 3.3.2. --- Maximum Tolerable Input Power Estimation --- p.53Chapter 3.3.3. --- Envelope Waveform Recovery of the Proposed Envelope Detector --- p.54Chapter 3.4. --- Summary --- p.57Chapter 3.5. --- References --- p.58Chapter 4. --- Clock Generator for EPC C-l G-2 Transponder --- p.59Chapter 4.1. --- Design Challenges Overview of Clock Generator --- p.59Chapter 4.2. --- Brief Review of PIE Symbols in EPC C1G2 Standard --- p.62Chapter 4.3. --- Proposed Clock Recovery Circuit Based on PIE Symbols for Clock Frequency Calibration --- p.64Chapter 4.3.1. --- Illustration on PIE Symbols for Clock Frequency Calibration --- p.64Chapter 4.3.2. --- Symbol time-length counter --- p.72Chapter 4.3.3. --- The M2.56MHZ Reference Generator and Sampling Frequency Requirement --- p.75Chapter 4.3.4. --- Symbol Length Reconfiguration for Different Tari and FLL Stability --- p.80Chapter 4.3.5. --- Frequency Detector and Loop Filter --- p.83Chapter 4.3.6. --- Proposed DCO Design --- p.84Chapter 4.3.7. --- Measurement Results and Discussions --- p.88Chapter 4.3.7.1. --- Frequency Calibration Measurement Results --- p.89Chapter 4.3.7.2. --- Number x and Tari Variation --- p.92Chapter 4.3.7.3. --- Temperature and Supply Variation --- p.93Chapter 4.3.7.4. --- Transient Supply Variation --- p.94Chapter 4.3.8. --- Works Comparison --- p.95Chapter 4.4. --- Clock Generator with Embedded PIE Decoder --- p.96Chapter 4.4.1. --- Clock Generator for Transponder Review --- p.96Chapter 4.4.2. --- PIE Decoder Review --- p.97Chapter 4.4.3. --- Proposed Clock Generator with Embedded PIE Decoder --- p.97Chapter 4.4.4. --- Measurement Results and Discussions --- p.100Chapter 4.5. --- Summary --- p.103Chapter 4.6. --- References --- p.105Chapter 5. --- ASK Modulator --- p.107Chapter 5.1. --- Introduction to ASK Modulator in RFD Transponder --- p.107Chapter 5.2. --- ASK Modulator Design --- p.109Chapter 5.3. --- ASK Modulator Measurement --- p.110Chapter 5.4. --- Summary --- p.113Chapter 5.5. --- References --- p.113Chapter 6. --- Conclusions --- p.114Chapter 6.1. --- Contribution --- p.114Chapter 6.2. --- Future Development --- p.11

    A Low-Power Passive UHF Tag With High-Precision Temperature Sensor for Human Body Application

    Get PDF
    Radio frequency identification (RFID) tags are widely used in various electronic devices due to their low cost, simple structure, and convenient data reading. This topic aims to study the key technologies of ultra-high frequency (UHF) RFID tags and high-precision temperature sensors, and how to reduce the power consumption of the temperature sensor and the overall circuits while maintaining minimal loss of performance. Combined with the biomedicine, an innovative high-precision human UHF RFID chip for body temperature monitoring is designed. In this study, a ring oscillator whose output frequency is linearly related to temperature is designed and proposed as a temperature-sensing circuit by innovatively combining auxiliary calibration technology. Then, a binary counter is used to count the pulses, and the temperature is ultimately calculated. This topic designed a relaxation oscillator independent of voltage and current. The various types of resistors were used to offset the temperature deviation. A current mirror array calibration circuit is used to calibrate the process corner deviation of the clock circuit with a self-calibration algorithm. This study mainly contributes to reducing power consumption and improving accuracy. The total power consumption of the RF/analog front-end and temperature sensor is 7.65µW. The measurement error of the temperature sensor in the range of 0 to 60◦C is less than ±0.1%, and the accuracy of the output frequency of the clock circuit is ±2.5%

    High Data-Rate, Battery-Free, Active Millimeter-Wave Identification Technologies for Future Integrated Sensing, Tracking, and Communication Systems-On-Chip

    Get PDF
    RÉSUMÉ Pour de nombreuses applications allant de la sécurité, le contrôle d'accès, la surveillance et la gestion de la chaîne d'approvisionnement aux applications biomédicales et d'imagerie parmi tant d'autres, l'identification par radiofréquence (RFID) a énormément influencé notre quotidien. Jusqu'à présent, cette technologie émergente a été la plupart du temps conçue et développé dans les basses fréquences (en dessous de 3 GHz). D’une part, pour des applications où de courte distances (quelques centimètres) et à faible taux de communications de données sont suffisantes (même préférables dans certains cas), la technologie RFID à couplage inductif qui fonctionne à basse fréquences (LF) ou à haute fréquences (HF) fonctionne très bien et elle est largement utilisée dans de nombreuses applications commerciales. D'autre part, afin d’augmenter la distance de communication (quelques mètres), le débit de données de communication, et ainsi minimiser la taille du tag, la technologie RFID fonctionnant dans la bande d’ultra-haute fréquence (UHF) et aux fréquences micro-ondes (par exemple, 2.4 GHz) a récemment attiré beaucoup d'attention dans le milieu de la recherche et le développement. Cependant, dans ces bandes de fréquences, une bande passante disponible restreinte avec la taille du tag assez large (principalement dominée par la taille d'antenne et de la batterie dans le cas d'un tag actif) sont les principaux facteurs qui ont toujours limité l'évolution de la technologie RFID actuelle. En effet, propulser la technologie RFID dans la bande de fréquences à ondes millimétriques briserait les barrières actuelles de la technologie RFID. La technologie d’identification aux fréquences à ondes millimétriques (MMID) offre plus de bande passante, et permet également la miniaturisation de la taille du tag, car à ces bandes de fréquences, la longueur d’onde est de l’ordre de quelques millimètres, une taille comparable à la taille d’un circuit intégré. L'antenne peut donc être soit intégré sur la même puce (antenne sur puce) ou soit encapsulé dans le même boitier que le circuit intégré. En dotant le tag la capacité de récolter sans fil son énergie à partir d'un signal aux fréquences à ondes millimétriques provenant du lecteur, lui fournissant ainsi l'autonomie énergétique (ainsi éliminant la nécessité d'une batterie et en même temps permettant la miniaturisation du tag), il devient alors possible d'intégrer entièrement tout le tag MMID sur une seule puce y compris les antennes, ce qui aboutira à la mise au point d’une nouvelle technologie miniature (μRFID) fonctionnant à la bande de fréquences à ondes millimétriques.----------ABSTRACT For countless applications ranging from security, access control, monitoring, and supply chain management to biomedical and imaging applications among many others, radio frequency identification (RFID) technology has tremendously impacted our daily life. So far, this ever-needed and emerging technology has been mostly designed and developed at low RF frequencies (below 3-GHz). For many practical applications where short-range (few centimeters) and low data-rate communications are sufficient and in some cases even preferable, inductively coupled RFID systems that operate over either low-frequency (LF) or high-frequency (HF) bands have performed quite well and have been widely used for practical and commercial applications. On the other hand, in the quest for a longer communication range (few meters), relatively high data-rate and smaller antenna size RFID systems operating over ultra-high frequency (UHF) and microwave frequency bands (e.g., 2.4-GHz) have recently attracted much attention in the research and development community. However, over these RF bands, a restricted available bandwidth together with an undesired tag size (mainly dominated by its off-chip antenna size and battery in the case of active tag) are the main factors that have been limiting the evolution of today’s RFID technology. Indeed, propelling RFID technology into millimeter-wave frequencies opens up new applications that cannot be made possible today.Millimeter-wave identification (MMID) technology is set out to exploit significantly larger bandwidth and smaller antenna size. Over these frequency bands, an effective wavelength is in the order of a few millimeters, hence close to a typical semiconductor (CMOS) die size. The antenna, therefore, may either be integrated on the same chip (antenna-on-chip – AoC) or embedded in the related package (antenna-in-package – AiP). In addition, by equipping the tag with the capability to wirelessly harvest its energy from an incoming millimeter-wave signal, thereby providing energy autonomy without the need of a battery and at the same time allowing miniaturization, it becomes possible to integrate the entire MMID tag circuitry on a single chip. Furthermore, the timely MMID concept is fully compatible with upcoming and future applications of millimeter-wave technology in wireless communications which are being discussed and developed worldwide in research and development communities, such as the internet of things (IoT), 5G, autonomous mobility, μSmart sensors, automotive RADAR technologies, etc

    Smart RFID Tags

    Get PDF

    Low Power Demodulator Design for RFID Applications

    Get PDF
    Power consumption is a key issue in today\u27s digital and analog design for various portable devices. Radio frequency identification (RFID) is a technology which requires very low power and it uses electromagnetic waves in the radio frequency to transmit the ID of objects. It has a broad range of uses although inventory management and tracking are the most common. A low power demodulator, part of a RFID transponder operating in the 900 MHz range, is presented using sub-threshold design. Using this technique and working with 90 nm complementary metal-oxide-semiconductor (CMOS) technology, the circuit can operate with a supply voltage as low as 0.3 V, consuming a very small amount of power compared to other demodulators in the literature, making it suitable for ultra-low power applications
    corecore