3,306 research outputs found

    A survey on algorithmic aspects of modular decomposition

    Full text link
    The modular decomposition is a technique that applies but is not restricted to graphs. The notion of module naturally appears in the proofs of many graph theoretical theorems. Computing the modular decomposition tree is an important preprocessing step to solve a large number of combinatorial optimization problems. Since the first polynomial time algorithm in the early 70's, the algorithmic of the modular decomposition has known an important development. This paper survey the ideas and techniques that arose from this line of research

    Graph-Based Classification of Omnidirectional Images

    Get PDF
    Omnidirectional cameras are widely used in such areas as robotics and virtual reality as they provide a wide field of view. Their images are often processed with classical methods, which might unfortunately lead to non-optimal solutions as these methods are designed for planar images that have different geometrical properties than omnidirectional ones. In this paper we study image classification task by taking into account the specific geometry of omnidirectional cameras with graph-based representations. In particular, we extend deep learning architectures to data on graphs; we propose a principled way of graph construction such that convolutional filters respond similarly for the same pattern on different positions of the image regardless of lens distortions. Our experiments show that the proposed method outperforms current techniques for the omnidirectional image classification problem

    Arboricity, h-Index, and Dynamic Algorithms

    Get PDF
    In this paper we present a modification of a technique by Chiba and Nishizeki [Chiba and Nishizeki: Arboricity and Subgraph Listing Algorithms, SIAM J. Comput. 14(1), pp. 210--223 (1985)]. Based on it, we design a data structure suitable for dynamic graph algorithms. We employ the data structure to formulate new algorithms for several problems, including counting subgraphs of four vertices, recognition of diamond-free graphs, cop-win graphs and strongly chordal graphs, among others. We improve the time complexity for graphs with low arboricity or h-index.Comment: 19 pages, no figure

    Fully polynomial FPT algorithms for some classes of bounded clique-width graphs

    Get PDF
    Parameterized complexity theory has enabled a refined classification of the difficulty of NP-hard optimization problems on graphs with respect to key structural properties, and so to a better understanding of their true difficulties. More recently, hardness results for problems in P were achieved using reasonable complexity theoretic assumptions such as: Strong Exponential Time Hypothesis (SETH), 3SUM and All-Pairs Shortest-Paths (APSP). According to these assumptions, many graph theoretic problems do not admit truly subquadratic algorithms, nor even truly subcubic algorithms (Williams and Williams, FOCS 2010 and Abboud, Grandoni, Williams, SODA 2015). A central technique used to tackle the difficulty of the above mentioned problems is fixed-parameter algorithms for polynomial-time problems with polynomial dependency in the fixed parameter (P-FPT). This technique was introduced by Abboud, Williams and Wang in SODA 2016 and continued by Husfeldt (IPEC 2016) and Fomin et al. (SODA 2017), using the treewidth as a parameter. Applying this technique to clique-width, another important graph parameter, remained to be done. In this paper we study several graph theoretic problems for which hardness results exist such as cycle problems (triangle detection, triangle counting, girth, diameter), distance problems (diameter, eccentricities, Gromov hyperbolicity, betweenness centrality) and maximum matching. We provide hardness results and fully polynomial FPT algorithms, using clique-width and some of its upper-bounds as parameters (split-width, modular-width and P_4P\_4-sparseness). We believe that our most important result is an O(k4n+m){\cal O}(k^4 \cdot n + m)-time algorithm for computing a maximum matching where kk is either the modular-width or the P_4P\_4-sparseness. The latter generalizes many algorithms that have been introduced so far for specific subclasses such as cographs, P_4P\_4-lite graphs, P_4P\_4-extendible graphs and P_4P\_4-tidy graphs. Our algorithms are based on preprocessing methods using modular decomposition, split decomposition and primeval decomposition. Thus they can also be generalized to some graph classes with unbounded clique-width

    Exploring Subexponential Parameterized Complexity of Completion Problems

    Get PDF
    Let F{\cal F} be a family of graphs. In the F{\cal F}-Completion problem, we are given a graph GG and an integer kk as input, and asked whether at most kk edges can be added to GG so that the resulting graph does not contain a graph from F{\cal F} as an induced subgraph. It appeared recently that special cases of F{\cal F}-Completion, the problem of completing into a chordal graph known as Minimum Fill-in, corresponding to the case of F={C4,C5,C6,}{\cal F}=\{C_4,C_5,C_6,\ldots\}, and the problem of completing into a split graph, i.e., the case of F={C4,2K2,C5}{\cal F}=\{C_4, 2K_2, C_5\}, are solvable in parameterized subexponential time 2O(klogk)nO(1)2^{O(\sqrt{k}\log{k})}n^{O(1)}. The exploration of this phenomenon is the main motivation for our research on F{\cal F}-Completion. In this paper we prove that completions into several well studied classes of graphs without long induced cycles also admit parameterized subexponential time algorithms by showing that: - The problem Trivially Perfect Completion is solvable in parameterized subexponential time 2O(klogk)nO(1)2^{O(\sqrt{k}\log{k})}n^{O(1)}, that is F{\cal F}-Completion for F={C4,P4}{\cal F} =\{C_4, P_4\}, a cycle and a path on four vertices. - The problems known in the literature as Pseudosplit Completion, the case where F={2K2,C4}{\cal F} = \{2K_2, C_4\}, and Threshold Completion, where F={2K2,P4,C4}{\cal F} = \{2K_2, P_4, C_4\}, are also solvable in time 2O(klogk)nO(1)2^{O(\sqrt{k}\log{k})} n^{O(1)}. We complement our algorithms for F{\cal F}-Completion with the following lower bounds: - For F={2K2}{\cal F} = \{2K_2\}, F={C4}{\cal F} = \{C_4\}, F={P4}{\cal F} = \{P_4\}, and F={2K2,P4}{\cal F} = \{2K_2, P_4\}, F{\cal F}-Completion cannot be solved in time 2o(k)nO(1)2^{o(k)} n^{O(1)} unless the Exponential Time Hypothesis (ETH) fails. Our upper and lower bounds provide a complete picture of the subexponential parameterized complexity of F{\cal F}-Completion problems for F{2K2,C4,P4}{\cal F}\subseteq\{2K_2, C_4, P_4\}.Comment: 32 pages, 16 figures, A preliminary version of this paper appeared in the proceedings of STACS'1
    corecore