346 research outputs found

    Arboricity, h-Index, and Dynamic Algorithms

    Get PDF
    In this paper we present a modification of a technique by Chiba and Nishizeki [Chiba and Nishizeki: Arboricity and Subgraph Listing Algorithms, SIAM J. Comput. 14(1), pp. 210--223 (1985)]. Based on it, we design a data structure suitable for dynamic graph algorithms. We employ the data structure to formulate new algorithms for several problems, including counting subgraphs of four vertices, recognition of diamond-free graphs, cop-win graphs and strongly chordal graphs, among others. We improve the time complexity for graphs with low arboricity or h-index.Comment: 19 pages, no figure

    Dynamic representation of consecutive-ones matrices and interval graphs

    Get PDF
    2015 Spring.Includes bibliographical references.We give an algorithm for updating a consecutive-ones ordering of a consecutive-ones matrix when a row or column is added or deleted. When the addition of the row or column would result in a matrix that does not have the consecutive-ones property, we return a well-known minimal forbidden submatrix for the consecutive-ones property, known as a Tucker submatrix, which serves as a certificate of correctness of the output in this case, in O(n log n) time. The ability to return such a certificate within this time bound is one of the new contributions of this work. Using this result, we obtain an O(n) algorithm for updating an interval model of an interval graph when an edge or vertex is added or deleted. This matches the bounds obtained by a previous dynamic interval-graph recognition algorithm due to Crespelle. We improve on Crespelle's result by producing an easy-to-check certificate, known as a Lekkerkerker-Boland subgraph, when a proposed change to the graph results in a graph that is not an interval graph. Our algorithm takes O(n log n) time to produce this certificate. The ability to return such a certificate within this time bound is the second main contribution of this work

    Simultaneous Representation of Proper and Unit Interval Graphs

    Get PDF
    In a confluence of combinatorics and geometry, simultaneous representations provide a way to realize combinatorial objects that share common structure. A standard case in the study of simultaneous representations is the sunflower case where all objects share the same common structure. While the recognition problem for general simultaneous interval graphs - the simultaneous version of arguably one of the most well-studied graph classes - is NP-complete, the complexity of the sunflower case for three or more simultaneous interval graphs is currently open. In this work we settle this question for proper interval graphs. We give an algorithm to recognize simultaneous proper interval graphs in linear time in the sunflower case where we allow any number of simultaneous graphs. Simultaneous unit interval graphs are much more "rigid" and therefore have less freedom in their representation. We show they can be recognized in time O(|V|*|E|) for any number of simultaneous graphs in the sunflower case where G=(V,E) is the union of the simultaneous graphs. We further show that both recognition problems are in general NP-complete if the number of simultaneous graphs is not fixed. The restriction to the sunflower case is in this sense necessary

    JGraphT -- A Java library for graph data structures and algorithms

    Full text link
    Mathematical software and graph-theoretical algorithmic packages to efficiently model, analyze and query graphs are crucial in an era where large-scale spatial, societal and economic network data are abundantly available. One such package is JGraphT, a programming library which contains very efficient and generic graph data-structures along with a large collection of state-of-the-art algorithms. The library is written in Java with stability, interoperability and performance in mind. A distinctive feature of this library is the ability to model vertices and edges as arbitrary objects, thereby permitting natural representations of many common networks including transportation, social and biological networks. Besides classic graph algorithms such as shortest-paths and spanning-tree algorithms, the library contains numerous advanced algorithms: graph and subgraph isomorphism; matching and flow problems; approximation algorithms for NP-hard problems such as independent set and TSP; and several more exotic algorithms such as Berge graph detection. Due to its versatility and generic design, JGraphT is currently used in large-scale commercial, non-commercial and academic research projects. In this work we describe in detail the design and underlying structure of the library, and discuss its most important features and algorithms. A computational study is conducted to evaluate the performance of JGraphT versus a number of similar libraries. Experiments on a large number of graphs over a variety of popular algorithms show that JGraphT is highly competitive with other established libraries such as NetworkX or the BGL.Comment: Major Revisio

    Obstruction characterization of co-TT graphs

    Full text link
    Threshold tolerance graphs and their complement graphs ( known as co-TT graphs) were introduced by Monma, Reed and Trotter[24]. Introducing the concept of negative interval Hell et al.[19] defined signed-interval bigraphs/digraphs and have shown that they are equivalent to several seemingly different classes of bigraphs/digraphs. They have also shown that co-TT graphs are equivalent to symmetric signed-interval digraphs. In this paper we characterize signed-interval bigraphs and signed-interval graphs respectively in terms of their biadjacency matrices and adjacency matrices. Finally, based on the geometric representation of signed-interval graphs we have setteled the open problem of forbidden induced subgraph characterization of co-TT graphs posed by Monma, Reed and Trotter in the same paper.Comment: arXiv admin note: substantial text overlap with arXiv:2206.0591

    Automorphism Groups of Geometrically Represented Graphs

    Get PDF
    Interval graphs are intersection graphs of closed intervals and circle graphs are intersection graphs of chords of a circle. We study automorphism groups of these graphs. We show that interval graphs have the same automorphism groups as trees, and circle graphs have the same as pseudoforests, which are graphs with at most one cycle in every connected component. Our technique determines automorphism groups for classes with a strong structure of all geometric representations, and it can be applied to other graph classes. Our results imply polynomial-time algorithms for computing automorphism groups in term of group products

    On the Classes of Interval Graphs of Limited Nesting and Count of Lengths

    Get PDF

    A survey on algorithmic aspects of modular decomposition

    Full text link
    The modular decomposition is a technique that applies but is not restricted to graphs. The notion of module naturally appears in the proofs of many graph theoretical theorems. Computing the modular decomposition tree is an important preprocessing step to solve a large number of combinatorial optimization problems. Since the first polynomial time algorithm in the early 70's, the algorithmic of the modular decomposition has known an important development. This paper survey the ideas and techniques that arose from this line of research
    • …
    corecore