2,798 research outputs found

    Computational intelligence techniques for HVAC systems: a review

    Get PDF
    Buildings are responsible for 40% of global energy use and contribute towards 30% of the total CO2 emissions. The drive to reduce energy use and associated greenhouse gas emissions from buildings has acted as a catalyst in the development of advanced computational methods for energy efficient design, management and control of buildings and systems. Heating, ventilation and air conditioning (HVAC) systems are the major source of energy consumption in buildings and an ideal candidate for substantial reductions in energy demand. Significant advances have been made in the past decades on the application of computational intelligence (CI) techniques for HVAC design, control, management, optimization, and fault detection and diagnosis. This article presents a comprehensive and critical review on the theory and applications of CI techniques for prediction, optimization, control and diagnosis of HVAC systems.The analysis of trends reveals the minimization of energy consumption was the key optimization objective in the reviewed research, closely followed by the optimization of thermal comfort, indoor air quality and occupant preferences. Hardcoded Matlab program was the most widely used simulation tool, followed by TRNSYS, EnergyPlus, DOE–2, HVACSim+ and ESP–r. Metaheuristic algorithms were the preferred CI method for solving HVAC related problems and in particular genetic algorithms were applied in most of the studies. Despite the low number of studies focussing on MAS, as compared to the other CI techniques, interest in the technique is increasing due to their ability of dividing and conquering an HVAC optimization problem with enhanced overall performance. The paper also identifies prospective future advancements and research directions

    Genetic and Swarm Algorithms for Optimizing the Control of Building HVAC Systems Using Real Data: A Comparative Study.

    Get PDF
    Buildings consume a considerable amount of electrical energy, the Heating, Ventilation, and Air Conditioning (HVAC) system being the most demanding. Saving energy and maintaining comfort still challenge scientists as they conflict. The control of HVAC systems can be improved by modeling their behavior, which is nonlinear, complex, and dynamic and works in uncertain contexts. Scientific literature shows that Soft Computing techniques require fewer computing resources but at the expense of some controlled accuracy loss. Metaheuristics-search-based algorithms show positive results, although further research will be necessary to resolve new challenging multi-objective optimization problems. This article compares the performance of selected genetic and swarmintelligence- based algorithms with the aim of discerning their capabilities in the field of smart buildings. MOGA, NSGA-II/III, OMOPSO, SMPSO, and Random Search, as benchmarking, are compared in hypervolume, generational distance, ε-indicator, and execution time. Real data from the Building Management System of Teatro Real de Madrid have been used to train a data model used for the multiple objective calculations. The novelty brought by the analysis of the different proposed dynamic optimization algorithms in the transient time of an HVAC system also includes the addition, to the conventional optimization objectives of comfort and energy efficiency, of the coefficient of performance, and of the rate of change in ambient temperature, aiming to extend the equipment lifecycle and minimize the overshooting effect when passing to the steady state. The optimization works impressively well in energy savings, although the results must be balanced with other real considerations, such as realistic constraints on chillers’ operational capacity. The intuitive visualization of the performance of the two families of algorithms in a real multi-HVAC system increases the novelty of this proposal.post-print888 K

    Smart Microgrids: Overview and Outlook

    Full text link
    The idea of changing our energy system from a hierarchical design into a set of nearly independent microgrids becomes feasible with the availability of small renewable energy generators. The smart microgrid concept comes with several challenges in research and engineering targeting load balancing, pricing, consumer integration and home automation. In this paper we first provide an overview on these challenges and present approaches that target the problems identified. While there exist promising algorithms for the particular field, we see a missing integration which specifically targets smart microgrids. Therefore, we propose an architecture that integrates the presented approaches and defines interfaces between the identified components such as generators, storage, smart and \dq{dumb} devices.Comment: presented at the GI Informatik 2012, Braunschweig Germany, Smart Grid Worksho

    Autonomic management of a building's multi-HVAC system start-up

    Get PDF
    Most studies about the control, automation, optimization and supervision of building HVAC systems concentrate on the steady-state regime, i.e., when the equipment is already working at its setpoints. The originality of the current work consists of proposing the optimization of building multi-HVAC systems from start-up until they reach the setpoint, making the transition to steady state-based strategies smooth. The proposed approach works on the transient regime of multi-HVAC systems optimizing contradictory objectives, such as the desired comfort and energy costs, based on the "Autonomic Cycle of Data Analysis Tasks" concept. In this case, the autonomic cycle is composed of two data analysis tasks: one for determining if the system is going towards the defined operational setpoint, and if that is not the case, another task for reconfiguring the operational mode of the multi-HVAC system to redirect it. The first task uses machine learning techniques to build detection and prediction models, and the second task defines a reconfiguration model using multiobjective evolutionary algorithms. This proposal is proven in a real case study that characterizes a particular multi-HVAC system and its operational setpoints. The performance obtained from the experiments in diverse situations is impressive since there is a high level of conformity for the multi-HVAC system to reach the setpoint and deliver the operation to the steady-state smoothly, avoiding overshooting and other non-desirable transitional effects.European CommissionJunta de Comunidades de Castilla-La ManchaMinisterio de Ciencia e Innovació
    corecore