17,964 research outputs found

    Fully automatic facial action unit detection and temporal analysis

    No full text
    In this work we report on the progress of building a system that enables fully automated fast and robust facial expression recognition from face video. We analyse subtle changes in facial expression by recognizing facial muscle action units (AUs) and analysing their temporal behavior. By detecting AUs from face video we enable the analysis of various facial communicative signals including facial expressions of emotion, attitude and mood. For an input video picturing a facial expression we detect per frame whether any of 15 different AUs is activated, whether that facial action is in the onset, apex, or offset phase, and what the total duration of the activation in question is. We base this process upon a set of spatio-temporal features calculated from tracking data for 20 facial fiducial points. To detect these 20 points of interest in the first frame of an input face video, we utilize a fully automatic, facial point localization method that uses individual feature GentleBoost templates built from Gabor wavelet features. Then, we exploit a particle filtering scheme that uses factorized likelihoods and a novel observation model that combines a rigid and a morphological model to track the facial points. The AUs displayed in the input video and their temporal segments are recognized finally by Support Vector Machines trained on a subset of most informative spatio-temporal features selected by AdaBoost. For Cohn-Kanade and MMI databases, the proposed system classifies 15 AUs occurring alone or in combination with other AUs with a mean agreement rate of 90.2 % with human FACS coders

    Machine Analysis of Facial Expressions

    Get PDF
    No abstract

    Facial Expression Recognition from World Wild Web

    Full text link
    Recognizing facial expression in a wild setting has remained a challenging task in computer vision. The World Wide Web is a good source of facial images which most of them are captured in uncontrolled conditions. In fact, the Internet is a Word Wild Web of facial images with expressions. This paper presents the results of a new study on collecting, annotating, and analyzing wild facial expressions from the web. Three search engines were queried using 1250 emotion related keywords in six different languages and the retrieved images were mapped by two annotators to six basic expressions and neutral. Deep neural networks and noise modeling were used in three different training scenarios to find how accurately facial expressions can be recognized when trained on noisy images collected from the web using query terms (e.g. happy face, laughing man, etc)? The results of our experiments show that deep neural networks can recognize wild facial expressions with an accuracy of 82.12%

    Recognition of nonmanual markers in American Sign Language (ASL) using non-parametric adaptive 2D-3D face tracking

    Full text link
    This paper addresses the problem of automatically recognizing linguistically significant nonmanual expressions in American Sign Language from video. We develop a fully automatic system that is able to track facial expressions and head movements, and detect and recognize facial events continuously from video. The main contributions of the proposed framework are the following: (1) We have built a stochastic and adaptive ensemble of face trackers to address factors resulting in lost face track; (2) We combine 2D and 3D deformable face models to warp input frames, thus correcting for any variation in facial appearance resulting from changes in 3D head pose; (3) We use a combination of geometric features and texture features extracted from a canonical frontal representation. The proposed new framework makes it possible to detect grammatically significant nonmanual expressions from continuous signing and to differentiate successfully among linguistically significant expressions that involve subtle differences in appearance. We present results that are based on the use of a dataset containing 330 sentences from videos that were collected and linguistically annotated at Boston University

    A Mimetic Strategy to Engage Voluntary Physical Activity In Interactive Entertainment

    Full text link
    We describe the design and implementation of a vision based interactive entertainment system that makes use of both involuntary and voluntary control paradigms. Unintentional input to the system from a potential viewer is used to drive attention-getting output and encourage the transition to voluntary interactive behaviour. The iMime system consists of a character animation engine based on the interaction metaphor of a mime performer that simulates non-verbal communication strategies, without spoken dialogue, to capture and hold the attention of a viewer. The system was developed in the context of a project studying care of dementia sufferers. Care for a dementia sufferer can place unreasonable demands on the time and attentional resources of their caregivers or family members. Our study contributes to the eventual development of a system aimed at providing relief to dementia caregivers, while at the same time serving as a source of pleasant interactive entertainment for viewers. The work reported here is also aimed at a more general study of the design of interactive entertainment systems involving a mixture of voluntary and involuntary control.Comment: 6 pages, 7 figures, ECAG08 worksho

    Time-Efficient Hybrid Approach for Facial Expression Recognition

    Get PDF
    Facial expression recognition is an emerging research area for improving human and computer interaction. This research plays a significant role in the field of social communication, commercial enterprise, law enforcement, and other computer interactions. In this paper, we propose a time-efficient hybrid design for facial expression recognition, combining image pre-processing steps and different Convolutional Neural Network (CNN) structures providing better accuracy and greatly improved training time. We are predicting seven basic emotions of human faces: sadness, happiness, disgust, anger, fear, surprise and neutral. The model performs well regarding challenging facial expression recognition where the emotion expressed could be one of several due to their quite similar facial characteristics such as anger, disgust, and sadness. The experiment to test the model was conducted across multiple databases and different facial orientations, and to the best of our knowledge, the model provided an accuracy of about 89.58% for KDEF dataset, 100% accuracy for JAFFE dataset and 71.975% accuracy for combined (KDEF + JAFFE + SFEW) dataset across these different scenarios. Performance evaluation was done by cross-validation techniques to avoid bias towards a specific set of images from a database
    • …
    corecore