74 research outputs found

    A 192×128 Time Correlated SPAD Image Sensor in 40-nm CMOS Technology

    Get PDF
    A 192 X 128 pixel single photon avalanche diode (SPAD) time-resolved single photon counting (TCSPC) image sensor is implemented in STMicroelectronics 40-nm CMOS technology. The 13% fill factor, 18.4\,\,\mu \text {m} \times 9.2\,\,\mu \text{m} pixel contains a 33-ps resolution, 135-ns full scale, 12-bit time-to-digital converter (TDC) with 0.9-LSB differential and 5.64-LSB integral nonlinearity (DNL/INL). The sensor achieves a mean 219-ps full-width half-maximum (FWHM) impulse response function (IRF) and is operable at up to 18.6 kframes/s through 64 parallelized serial outputs. Cylindrical microlenses with a concentration factor of 3.25 increase the fill factor to 42%. The median dark count rate (DCR) is 25 Hz at 1.5-V excess bias. A digital calibration scheme integrated into a column of the imager allows off-chip digital process, voltage, and temperature (PVT) compensation of every frame on the fly. Fluorescence lifetime imaging microscopy (FLIM) results are presented

    Miniature high dynamic range time-resolved CMOS SPAD image sensors

    Get PDF
    Since their integration in complementary metal oxide (CMOS) semiconductor technology in 2003, single photon avalanche diodes (SPADs) have inspired a new era of low cost high integration quantum-level image sensors. Their unique feature of discerning single photon detections, their ability to retain temporal information on every collected photon and their amenability to high speed image sensor architectures makes them prime candidates for low light and time-resolved applications. From the biomedical field of fluorescence lifetime imaging microscopy (FLIM) to extreme physical phenomena such as quantum entanglement, all the way to time of flight (ToF) consumer applications such as gesture recognition and more recently automotive light detection and ranging (LIDAR), huge steps in detector and sensor architectures have been made to address the design challenges of pixel sensitivity and functionality trade-off, scalability and handling of large data rates. The goal of this research is to explore the hypothesis that given the state of the art CMOS nodes and fabrication technologies, it is possible to design miniature SPAD image sensors for time-resolved applications with a small pixel pitch while maintaining both sensitivity and built -in functionality. Three key approaches are pursued to that purpose: leveraging the innate area reduction of logic gates and finer design rules of advanced CMOS nodes to balance the pixel’s fill factor and processing capability, smarter pixel designs with configurable functionality and novel system architectures that lift the processing burden off the pixel array and mediate data flow. Two pathfinder SPAD image sensors were designed and fabricated: a 96 × 40 planar front side illuminated (FSI) sensor with 66% fill factor at 8.25μm pixel pitch in an industrialised 40nm process and a 128 × 120 3D-stacked backside illuminated (BSI) sensor with 45% fill factor at 7.83μm pixel pitch. Both designs rely on a digital, configurable, 12-bit ripple counter pixel allowing for time-gated shot noise limited photon counting. The FSI sensor was operated as a quanta image sensor (QIS) achieving an extended dynamic range in excess of 100dB, utilising triple exposure windows and in-pixel data compression which reduces data rates by a factor of 3.75×. The stacked sensor is the first demonstration of a wafer scale SPAD imaging array with a 1-to-1 hybrid bond connection. Characterisation results of the detector and sensor performance are presented. Two other time-resolved 3D-stacked BSI SPAD image sensor architectures are proposed. The first is a fully integrated 5-wire interface system on chip (SoC), with built-in power management and off-focal plane data processing and storage for high dynamic range as well as autonomous video rate operation. Preliminary images and bring-up results of the fabricated 2mm² sensor are shown. The second is a highly configurable design capable of simultaneous multi-bit oversampled imaging and programmable region of interest (ROI) time correlated single photon counting (TCSPC) with on-chip histogram generation. The 6.48μm pitch array has been submitted for fabrication. In-depth design details of both architectures are discussed

    Challenges and Solutions to Next-Generation Single-Photon Imagers

    Get PDF
    Detecting and counting single photons is useful in an increasingly large number of applications. Most applications require large formats, approaching and even far exceeding 1 megapixel. In this thesis, we look at the challenges of massively parallel photon-counting cameras from all performance angles. The thesis deals with a number of performance issues that emerge when the number of pixels exceeds about 1/4 of megapixels, proposing characterization techniques and solutions to mitigate performance degradation and non-uniformity. Two cameras were created to validate the proposed techniques. The first camera, SwissSPAD, comprises an array of 512 x 128 SPAD pixels, each with a one-bit memory and a gating mechanism to achieve 5ns high precision time windows with high uniformity across the array. With a massively parallel readout of over 10 Gigabit/s and positioning of the integration time window accurate to the pico-second range, fluorescence lifetime imaging and fluorescence correlation spectroscopy imaging achieve a speedup of several orders of magnitude while ensuring high precision in the measurements. Other possible applications include wide-field time-of-flight imaging and the generation of quantum random numbers at highest bit-rates. Lately super-resolution microscopy techniques have also used SwissSPAD. The second camera, LinoSPAD, takes the concepts of SwissSPAD one step further by moving even more 'intelligence' to the FPGA and reducing the sensor complexity to the bare minimum. This allows focusing the optimization of the sensor on the most important metrics of photon efficiency and fill factor. As such, the sensor consists of one line of SPADs that have a direct connection each to the FPGA where complex photon processing algorithms can be implemented. As a demonstration of the capabilities of current lowcost FPGAs we implemented an array of time-to-digital converters that can handle up to 8.5 billion photons per second, measuring each one of them and accounting them in high precision histograms. Using simple laser diodes and a circuit to generate light pulses in the picosecond range, we demonstrate a ubiquitous 3D time-of-flight sensor. The thesis intends to be a first step towards achieving the world's first megapixel SPAD camera, which, we believe, is in grasp thanks to the architectural and circuital techniques proposed in this thesis. In addition, we believe that the applications proposed in this thesis offer a wide variety of uses of the sensors presented in this thesis and in future ones to come

    CMOS SPAD-based image sensor for single photon counting and time of flight imaging

    Get PDF
    The facility to capture the arrival of a single photon, is the fundamental limit to the detection of quantised electromagnetic radiation. An image sensor capable of capturing a picture with this ultimate optical and temporal precision is the pinnacle of photo-sensing. The creation of high spatial resolution, single photon sensitive, and time-resolved image sensors in complementary metal oxide semiconductor (CMOS) technology offers numerous benefits in a wide field of applications. These CMOS devices will be suitable to replace high sensitivity charge-coupled device (CCD) technology (electron-multiplied or electron bombarded) with significantly lower cost and comparable performance in low light or high speed scenarios. For example, with temporal resolution in the order of nano and picoseconds, detailed three-dimensional (3D) pictures can be formed by measuring the time of flight (TOF) of a light pulse. High frame rate imaging of single photons can yield new capabilities in super-resolution microscopy. Also, the imaging of quantum effects such as the entanglement of photons may be realised. The goal of this research project is the development of such an image sensor by exploiting single photon avalanche diodes (SPAD) in advanced imaging-specific 130nm front side illuminated (FSI) CMOS technology. SPADs have three key combined advantages over other imaging technologies: single photon sensitivity, picosecond temporal resolution and the facility to be integrated in standard CMOS technology. Analogue techniques are employed to create an efficient and compact imager that is scalable to mega-pixel arrays. A SPAD-based image sensor is described with 320 by 240 pixels at a pitch of 8μm and an optical efficiency or fill-factor of 26.8%. Each pixel comprises a SPAD with a hybrid analogue counting and memory circuit that makes novel use of a low-power charge transfer amplifier. Global shutter single photon counting images are captured. These exhibit photon shot noise limited statistics with unprecedented low input-referred noise at an equivalent of 0.06 electrons. The CMOS image sensor (CIS) trends of shrinking pixels, increasing array sizes, decreasing read noise, fast readout and oversampled image formation are projected towards the formation of binary single photon imagers or quanta image sensors (QIS). In a binary digital image capture mode, the image sensor offers a look-ahead to the properties and performance of future QISs with 20,000 binary frames per second readout with a bit error rate of 1.7 x 10-3. The bit density, or cumulative binary intensity, against exposure performance of this image sensor is in the shape of the famous Hurter and Driffield densitometry curves of photographic film. Oversampled time-gated binary image capture is demonstrated, capturing 3D TOF images with 3.8cm precision in a 60cm range

    Cmos Based Lensless Imaging Systems And Support Circuits

    Full text link
    While much progress has been made in various fields of study in past few decades, leading to better understanding of science as well as better quality of life, the role of optical sensing has grown among electrical, chemical, optical, and other physical signal modalities. As an example, fluorescent microscopy has become one of the most important methods in the modern biology. However, broader implementation of optical sensing has been limited due to the expensive and bulky optical and mechanical components of conventional optical sensor systems. To address such bottleneck, this dissertation presents several cost-effective, compact approaches of optical sensor arrays based on solid state devices that can replace the conventional components. As an example, in chapter 2 we demonstrate a chip-scale (<1 mm2 ) sensor, the Planar Fourier Capture Array (PFCA), capable of imaging the far-field without any off-chip optics. The PFCA consists of an array of angle-sensitive pixels manufactured in a standard semiconductor process, each of which reports one component of a spatial two-dimensional (2D) Fourier transform of the local light field. Thus, the sensor directly captures 2D Fourier transforms of scenes. The effective resolution of our prototype is approximately 400 pixels. My work on this project [15] includes a circuit design and layout and the overall testing of the imaging system. In chapter 3 we present a fully integrated, Single Photon Avalanche Detector (SPAD) using only standard low- voltage (1.8V) CMOS devices in a 0.18m process. The system requires one highvoltage AC signal which alternately reverse biases the SPADs into avalanche breakdown and then resets with a forward bias. The proposed self-quenching circuit intrinsically suppresses after-pulse effects, improving signal to noise ratio while still permitting fine time resolution. The required high-voltage AC signal can be generated by resonant structures and can be shared across arrays of SPADs [24]. An ideal light sensor to provide the precise incident intensity, location, and angle of incoming photons is shown in chapter 4. Single photon avalanche diodes (SPADs) provide such desired high (single photon) sensitivity with precise time information, and can be implemented at a pixel scale to form an array to extract spatial information. Furthermore, recent work has demonstrated photodiode-based structures (combined with micro-lenses and diffraction gratings) that are capable of encoding both spatial and angular information of the incident light. In this chapter, we describe the implementation of such grating structure on SPAD to realize a pixel-scale angle-sensitive single photon avalanche diode (A-SPAD) using a standard CMOS process. While the underlying SPAD structure provides the high sensitivity, the diffraction gratings consisting of two sets of metal layers offers the angle-sensitivity. Such unique combination of the SPAD and the diffraction gratings expand the sensing dimensions to pave a path towards a lens-less 3-D imaging and a light-field timeof-flight imaging. In chapter 5, we present a 72 x 60, angle-sensitive single photon avalanche diode (A-SPAD) array for lens-less 3-D fluorescent life time imaging. A-SPAD pixels are comprised of (1) a SPAD to resolve precise timing information, to reject high-powered UV stimulus, and to map the lifetimes of different fluorescent sources and (2) integrated diffraction gratings on top of the SPAD to extract incident angles of incoming light, enabling 3-D localization at a micrometer scale. The chip presented in this work also integrates pixel-level counters as well as shared timing circuitry, and is implemented in conventional 180nm CMOS technology without any post-processing. Contact-based read- out from a revolving MEMS accelerometers is problematic therefore contactless (optical) read-out is preferred. The optical readout requires an image sensor to resolve nanometer-scale shifts of the MEMS image. Traditional imagers record on a rectangular grid which is not well-suited for efficiently imaging rotating objects due to the significant processing overhead required to translate Cartesian coordinates to angular position. Therefore, in chapter 6 we demonstrate a high-speed ( 1kfps), circular, CMOS imaging array for contact-less, optical measurement of rotating inertial sensors. The imager is designed for real-time optical readout and calibration of a MEMS accelerometer revolving at greater than 1000rpm. The imager uses a uniform circular arrangement of pixels to enable rapid imaging of rotational objects. Furthermore, each photodiode itself is circular to maintain uniform response throughout the entire revolution. Combining a high frame rate and a uniform response to motion, the imager can achieve sub-pixel resolution (25nm) of the displacement of micro scale features. In order to avoid fixed pattern noise arising from non-uniform routing within the array we implemented a new global shutter technique that is insensitive to parasitic capacitance. To ease integration with various MEMS platforms, the system has SPI control, on-chip bias generation, sub-array imaging, and digital data read-out. My work on this project [20] includes a circuit design and lay- out and some testing including, a FPGA based controller design of the imaging system. In the previous chapters, compact and cost effective imaging sys- tems have been introduced. Those imaging systems show great potential for wireless implantable systems. A power rectifier for the implant provides a volt- age DC power with a small inductor, for small volume, from a small AC voltage input. In the last chapter we demonstrate an inductively powered, orthogonal current-reuse multi-channel amplifier for power-efficient neural recording. The power rectifier uses the input swing as a self-synchronous charge pump, making it a fully passive, full-wave ladder rectifier. The rectifier supplies 10.37[MICRO SIGN]W at 1.224V to the multi-channel amplifier, which includes bias generation. The prototype device is fabricated in a TSMC 65nm CMOS process, with an active area of 0.107mm2 . The maximum measured power conversion efficiency (PCE) is 16.58% with a 184mV input amplitude. My work on this project [25] in- cludes the rectifier design and overall testing to combine "orthogonal currentreuse neural amplifier" designed by Ben Johnson

    A SPAD-Based QVGA Image Sensor for Single-Photon Counting and Quanta Imaging

    Get PDF
    A CMOS single-photon avalanche diode (SPAD)-based quarter video graphics array image sensor with 8-μm pixel pitch and 26.8% fill factor (FF) is presented. The combination of analog pixel electronics and scalable shared-well SPAD devices facilitates high-resolution, high-FF SPAD imaging arrays exhibiting photon shot-noise-limited statistics. The SPAD has 47 counts/s dark count rate at 1.5 V excess bias (EB), 39.5% photon detection probability (PDP) at 480 nm, and a minimum of 1.1 ns dead time at 1 V EB. Analog single-photon counting imaging is demonstrated with maximum 14.2-mV/SPAD event sensitivity and 0.06e- minimum equivalent read noise. Binary quanta image sensor (QIS) 16-kframes/s real-time oversampling is shown, verifying single-photon QIS theory with 4.6× overexposure latitude and 0.168e- read noise
    • …
    corecore