40,099 research outputs found

    A Full Characterization of Quantum Advice

    Get PDF
    We prove the following surprising result: given any quantum state rho on n qubits, there exists a local Hamiltonian H on poly(n) qubits (e.g., a sum of two-qubit interactions), such that any ground state of H can be used to simulate rho on all quantum circuits of fixed polynomial size. In terms of complexity classes, this implies that BQP/qpoly is contained in QMA/poly, which supersedes the previous result of Aaronson that BQP/qpoly is contained in PP/poly. Indeed, we can exactly characterize quantum advice, as equivalent in power to untrusted quantum advice combined with trusted classical advice. Proving our main result requires combining a large number of previous tools -- including a result of Alon et al. on learning of real-valued concept classes, a result of Aaronson on the learnability of quantum states, and a result of Aharonov and Regev on "QMA+ super-verifiers" -- and also creating some new ones. The main new tool is a so-called majority-certificates lemma, which is closely related to boosting in machine learning, and which seems likely to find independent applications. In its simplest version, this lemma says the following. Given any set S of Boolean functions on n variables, any function f in S can be expressed as the pointwise majority of m=O(n) functions f1,...,fm in S, such that each fi is the unique function in S compatible with O(log|S|) input/output constraints.Comment: We fixed two significant issues: 1. The definition of YQP machines needed to be changed to preserve our results. The revised definition is more natural and has the same intuitive interpretation. 2. We needed properties of Local Hamiltonian reductions going beyond those proved in previous works (whose results we'd misstated). We now prove the needed properties. See p. 6 for more on both point

    Polynomial time quantum computation with advice

    Full text link
    Advice is supplementary information that enhances the computational power of an underlying computation. This paper focuses on advice that is given in the form of a pure quantum state and examines the influence of such advice on the behaviors of an underlying polynomial-time quantum computation with bounded-error probability.Comment: 9 page

    Shadow Tomography of Quantum States

    Full text link
    We introduce the problem of *shadow tomography*: given an unknown DD-dimensional quantum mixed state ρ\rho, as well as known two-outcome measurements E1,,EME_{1},\ldots,E_{M}, estimate the probability that EiE_{i} accepts ρ\rho, to within additive error ε\varepsilon, for each of the MM measurements. How many copies of ρ\rho are needed to achieve this, with high probability? Surprisingly, we give a procedure that solves the problem by measuring only O~(ε4log4MlogD)\widetilde{O}\left( \varepsilon^{-4}\cdot\log^{4} M\cdot\log D\right) copies. This means, for example, that we can learn the behavior of an arbitrary nn-qubit state, on all accepting/rejecting circuits of some fixed polynomial size, by measuring only nO(1)n^{O\left( 1\right)} copies of the state. This resolves an open problem of the author, which arose from his work on private-key quantum money schemes, but which also has applications to quantum copy-protected software, quantum advice, and quantum one-way communication. Recently, building on this work, Brand\~ao et al. have given a different approach to shadow tomography using semidefinite programming, which achieves a savings in computation time.Comment: 29 pages, extended abstract appeared in Proceedings of STOC'2018, revised to give slightly better upper bound (1/eps^4 rather than 1/eps^5) and lower bounds with explicit dependence on the dimension

    Continuous variable entanglement on a chip

    Full text link
    Encoding quantum information in continuous variables (CV)---as the quadrature of electromagnetic fields---is a powerful approach to quantum information science and technology. CV entanglement---light beams in Einstein-Podolsky-Rosen (EPR) states---is a key resource for quantum information protocols; and enables hybridisation between CV and single photon discrete variable (DV) qubit systems. However, CV systems are currently limited by their implementation in free-space optical networks: increased complexity, low loss, high-precision alignment and stability, as well as hybridisation, demand an alternative approach. Here we show an integrated photonic implementation of the key capabilities for CV quantum technologies---generation and characterisation of EPR beams in a photonic chip. Combined with integrated squeezing and non-Gaussian operation, these results open the way to universal quantum information processing with light

    Online Learning of Quantum States

    Full text link
    Suppose we have many copies of an unknown nn-qubit state ρ\rho. We measure some copies of ρ\rho using a known two-outcome measurement E1E_{1}, then other copies using a measurement E2E_{2}, and so on. At each stage tt, we generate a current hypothesis σt\sigma_{t} about the state ρ\rho, using the outcomes of the previous measurements. We show that it is possible to do this in a way that guarantees that Tr(Eiσt)Tr(Eiρ)|\operatorname{Tr}(E_{i} \sigma_{t}) - \operatorname{Tr}(E_{i}\rho) |, the error in our prediction for the next measurement, is at least ε\varepsilon at most O ⁣(n/ε2)\operatorname{O}\!\left(n / \varepsilon^2 \right) times. Even in the "non-realizable" setting---where there could be arbitrary noise in the measurement outcomes---we show how to output hypothesis states that do significantly worse than the best possible states at most O ⁣(Tn)\operatorname{O}\!\left(\sqrt {Tn}\right) times on the first TT measurements. These results generalize a 2007 theorem by Aaronson on the PAC-learnability of quantum states, to the online and regret-minimization settings. We give three different ways to prove our results---using convex optimization, quantum postselection, and sequential fat-shattering dimension---which have different advantages in terms of parameters and portability.Comment: 18 page

    Quantum state tomography of molecular rotation

    Full text link
    We show how the rotational quantum state of a linear or symmetric top rotor can be reconstructed from finite time observations of the polar angular distribution under certain conditions. The presented tomographic method can reconstruct the complete rotational quantum state in many non-adiabatic alignment experiments. Our analysis applies for measurement data available with existing measurement techniques.Comment: 7 pages, 1 figur
    corecore