83 research outputs found

    {WiFi GPS} based Combined positioning Algorithm

    No full text
    International audienceIf nowadays, positioning becomes more and more accurate, and covers better and better a territory (indoor and outdoor), it remains territories where traditional (and basic) positioning system (GPS, gsm or WiFi) and hybrid ones (GPS-gsm, GPS-WiFi, GPS-WiFi-gsm,...) are insufficient and requires research investment treating combined positioning. In this paper we propose a GPS-WiFi combined positioning algorithm, based on trilateration technique. Real experiments and other simulation are conduced and demonstrate accuracy gains, even where various criteria dilution of precision (GPS dop s criteria, or ours WiFi geometrical and signal attenuation s dop proposal, or hybrid dop one s) indicate all the disruption of positioning service. A testbed scenario issued from a real urban campus environment validates not only our GPS-WiFi combined positioning algorithm but also an implementation of pertinent positioning techniques and dop s criteria. This work constitutes ?a further ?step to better position everywhere and to ensure continuity of a positioning service

    Advanced real-time indoor tracking based on the Viterbi algorithm and semantic data

    Get PDF
    A real-time indoor tracking system based on the Viterbi algorithm is developed. This Viterbi principle is used in combination with semantic data to improve the accuracy, that is, the environment of the object that is being tracked and a motion model. The starting point is a fingerprinting technique for which an advanced network planner is used to automatically construct the radio map, avoiding a time consuming measurement campaign. The developed algorithm was verified with simulations and with experiments in a building-wide testbed for sensor experiments, where a median accuracy below 2 m was obtained. Compared to a reference algorithm without Viterbi or semantic data, the results indicated a significant improvement: the mean accuracy and standard deviation improved by, respectively, 26.1% and 65.3%. Thereafter a sensitivity analysis was conducted to estimate the influence of node density, grid size, memory usage, and semantic data on the performance

    Location in Ad Hoc Networks

    Get PDF

    Определение местопложения объектов в пространстве

    Get PDF

    RSS-Based Indoor Localization System with Single Base Station

    Get PDF
    The paper proposes an Indoor Localization System (ILS) which uses only one fixed Base Station (BS) with simple non-reconfigurable antennas. The proposed algorithm measures Received Signal Strength (RSS) and maps it to the location in the room by estimating signal strength of a direct line of sight (LOS) signal and signal of the first order reflection from the wall. The algorithm is evaluated through both simulations and empirical measurements in a furnished open space office, sampling 21 different locations in the room. It is demonstrated the system can identify user’s real-time location with a maximum estimation error below 0.7 m for 80% confidence Cumulative Distribution Function (CDF) user level, demonstrating the ability to accurately estimate the receiver’s location within the room. The system is intended as a cost-efficient indoor localization technique, offering simplicity and easy integration with existing wireless communication systems. Unlike comparable single base station localization techniques, the proposed system does not require beam scanning, offering stable communication capacity while performing the localization process

    Performance Analysis of the Gossip based Ad Hoc Routing using Received Signal Strength for AODV

    Get PDF
    In Mobile Ad hoc Networks (MANETs), congestion control is a critical issue in controlling the degradation of network performance. During the route discovery process, the MANET routing protocol floods control packets to discover routes which may cause congestion. Currently, routing protocols take the shortest path with the minimum number of hops to reach the destination without considering the effects of Received Signal Strength (RSS). During the route discovery process, each node of MANET should not blindly broadcast without considering RSS to avoid link breakage. This causes excess energy consumption in rediscovering new routes and a greater likelihood of network partition. This paper suggests a modification of the rebroadcasting procedure for Received Requests (RREQ) in AODV using RSS on Gossip algorithm (AODV-RG). The performance of the protocol is measured based on different scenarios through metrics such as packet delivery ratio, throughput and, end-to-end delay using Network Simulator (NS 3.24.1). Experimental results show that thee AODV-RG protocol outperforms that of AODV with gossip probability p=0.66 by minimizing RREQ rebroadcasting messages during route discovery process. The Ad hoc mobile networks are suffering from the scarce power in the nodes. To decrease the amount of power consumption the AODV has been developed by many researchers by introducing the GOSSIP probability to alter the flow of RREQ. The advantage of this scheme is to decrease the overheads and the busy time of the node by detecting the RSS of the receiving node. When RSS is more than the threshold, then the RREQ is forwarded. If RSS is less than the threshold value, then RREQ is ignored. We need to test if the GOSSIP use has affected positively the quality of performance parameters such as utilization, packet delay ratio and throughput of the RREQ rebroadcast and end-to-end delay

    Location tracking in indoor and outdoor environments based on the viterbi principle

    Get PDF

    RSS-based indoor localization system with single base station

    Get PDF
    The paper proposes an Indoor Localization System (ILS) which uses only one fixed Base Station (BS) with simple non-reconfigurable antennas. The proposed algorithm measures Received Signal Strength (RSS) and maps it to the location in the room by estimating signal strength of a direct line of sight (LOS) signal and signal of the first order reflection from the wall. The algorithm is evaluated through both simulations and empirical measurements in a furnished open space office, sampling 21 different locations in the room. It is demonstrated the system can identify user’s real-time location with a maximum estimation error below 0.7 m for 80% confidence Cumulative Distribution Function (CDF) user level, demonstrating the ability to accurately estimate the receiver’s location within the room. The system is intended as a cost-efficient indoor localization technique, offering simplicity and easy integration with existing wireless communication systems. Unlike comparable single base station localization techniques, the proposed system does not require beam scanning, offering stable communication capacity while performing the localization process

    Radio frequency energy harvesting for autonomous systems

    Get PDF
    A thesis submitted to the University of Bedfordshire in partial fulfilment of the requirements for the degree of Doctor of PhilosophyRadio Frequency Energy Harvesting (RFEH) is a technology which enables wireless power delivery to multiple devices from a single energy source. The main components of this technology are the antenna and the rectifying circuitry that converts the RF signal into DC power. The devices which are using Radio Frequency (RF) power may be integrated into Wireless Sensor Networks (WSN), Radio Frequency Identification (RFID), biomedical implants, Internet of Things (IoT), Unmanned Aerial Vehicles (UAVs), smart meters, telemetry systems and may even be used to charge mobile phones. Aside from autonomous systems such as WSNs and RFID, the multi-billion portable electronics market – from GSM phones to MP3 players – would be an attractive application for RF energy harvesting if the power requirements are met. To investigate the potential for ambient RFEH, several RF site surveys were conducted around London. Using the results from these surveys, various harvesters were designed and tested for different frequency bands from the RF sources with the highest power density within the Medium Wave (MW), ultra- and super-high (UHF and SHF) frequency spectrum. Prototypes were fabricated and tested for each of the bands and proved that a large urban area around Brookmans park radio centre is suitable location for harvesting ambient RF energy. Although the RFEH offers very good efficiency performance, if a single antenna is considered, the maximum power delivered is generally not enough to power all the elements of an autonomous system. In this thesis we present techniques for optimising the power efficiency of the RFEH device under demanding conditions such as ultra-low power densities, arbitrary polarisation and diverse load impedances. Subsequently, an energy harvesting ferrite rod rectenna is designed to power up a wireless sensor and its transmitter, generating dedicated Medium Wave (MW) signals in an indoor environment. Harvested power management, application scenarios and practical results are also presented
    corecore