152,571 research outputs found

    Online hashing for fast similarity search

    Full text link
    In this thesis, the problem of online adaptive hashing for fast similarity search is studied. Similarity search is a central problem in many computer vision applications. The ever-growing size of available data collections and the increasing usage of high-dimensional representations in describing data have increased the computational cost of performing similarity search, requiring search strategies that can explore such collections in an efficient and effective manner. One promising family of approaches is based on hashing, in which the goal is to map the data into the Hamming space where fast search mechanisms exist, while preserving the original neighborhood structure of the data. We first present a novel online hashing algorithm in which the hash mapping is updated in an iterative manner with streaming data. Being online, our method is amenable to variations of the data. Moreover, our formulation is orders of magnitude faster to train than state-of-the-art hashing solutions. Secondly, we propose an online supervised hashing framework in which the goal is to map data associated with similar labels to nearby binary representations. For this purpose, we utilize Error Correcting Output Codes (ECOCs) and consider an online boosting formulation in learning the hash mapping. Our formulation does not require any prior assumptions on the label space and is well-suited for expanding datasets that have new label inclusions. We also introduce a flexible framework that allows us to reduce hash table entry updates. This is critical, especially when frequent updates may occur as the hash table grows larger and larger. Thirdly, we propose a novel mutual information measure to efficiently infer the quality of a hash mapping and retrieval performance. This measure has lower complexity than standard retrieval metrics. With this measure, we first address a key challenge in online hashing that has often been ignored: the binary representations of the data must be recomputed to keep pace with updates to the hash mapping. Based on our novel mutual information measure, we propose an efficient quality measure for hash functions, and use it to determine when to update the hash table. Next, we show that this mutual information criterion can be used as an objective in learning hash functions, using gradient-based optimization. Experiments on image retrieval benchmarks confirm the effectiveness of our formulation, both in reducing hash table recomputations and in learning high-quality hash functions

    Cross-Paced Representation Learning with Partial Curricula for Sketch-based Image Retrieval

    Get PDF
    In this paper we address the problem of learning robust cross-domain representations for sketch-based image retrieval (SBIR). While most SBIR approaches focus on extracting low- and mid-level descriptors for direct feature matching, recent works have shown the benefit of learning coupled feature representations to describe data from two related sources. However, cross-domain representation learning methods are typically cast into non-convex minimization problems that are difficult to optimize, leading to unsatisfactory performance. Inspired by self-paced learning, a learning methodology designed to overcome convergence issues related to local optima by exploiting the samples in a meaningful order (i.e. easy to hard), we introduce the cross-paced partial curriculum learning (CPPCL) framework. Compared with existing self-paced learning methods which only consider a single modality and cannot deal with prior knowledge, CPPCL is specifically designed to assess the learning pace by jointly handling data from dual sources and modality-specific prior information provided in the form of partial curricula. Additionally, thanks to the learned dictionaries, we demonstrate that the proposed CPPCL embeds robust coupled representations for SBIR. Our approach is extensively evaluated on four publicly available datasets (i.e. CUFS, Flickr15K, QueenMary SBIR and TU-Berlin Extension datasets), showing superior performance over competing SBIR methods

    ResumeNet: A Learning-based Framework for Automatic Resume Quality Assessment

    Full text link
    Recruitment of appropriate people for certain positions is critical for any companies or organizations. Manually screening to select appropriate candidates from large amounts of resumes can be exhausted and time-consuming. However, there is no public tool that can be directly used for automatic resume quality assessment (RQA). This motivates us to develop a method for automatic RQA. Since there is also no public dataset for model training and evaluation, we build a dataset for RQA by collecting around 10K resumes, which are provided by a private resume management company. By investigating the dataset, we identify some factors or features that could be useful to discriminate good resumes from bad ones, e.g., the consistency between different parts of a resume. Then a neural-network model is designed to predict the quality of each resume, where some text processing techniques are incorporated. To deal with the label deficiency issue in the dataset, we propose several variants of the model by either utilizing the pair/triplet-based loss, or introducing some semi-supervised learning technique to make use of the abundant unlabeled data. Both the presented baseline model and its variants are general and easy to implement. Various popular criteria including the receiver operating characteristic (ROC) curve, F-measure and ranking-based average precision (AP) are adopted for model evaluation. We compare the different variants with our baseline model. Since there is no public algorithm for RQA, we further compare our results with those obtained from a website that can score a resume. Experimental results in terms of different criteria demonstrate the effectiveness of the proposed method. We foresee that our approach would transform the way of future human resources management.Comment: ICD
    • …
    corecore