155 research outputs found

    Bayesian demosaicing using Gaussian scale mixture priors with local adaptivity in the dual tree complex wavelet packet transform domain

    Get PDF
    In digital cameras and mobile phones, there is an ongoing trend to increase the image resolution, decrease the sensor size and to use lower exposure times. Because smaller sensors inherently lead to more noise and a worse spatial resolution, digital post-processing techniques are required to resolve many of the artifacts. Color filter arrays (CFAs), which use alternating patterns of color filters, are very popular because of price and power consumption reasons. However, color filter arrays require the use of a post-processing technique such as demosaicing to recover full resolution RGB images. Recently, there has been some interest in techniques that jointly perform the demosaicing and denoising. This has the advantage that the demosaicing and denoising can be performed optimally (e.g. in the MSE sense) for the considered noise model, while avoiding artifacts introduced when using demosaicing and denoising sequentially. ABSTRACT In this paper, we will continue the research line of the wavelet-based demosaicing techniques. These approaches are computationally simple and very suited for combination with denoising. Therefore, we will derive Bayesian Minimum Squared Error (MMSE) joint demosaicing and denoising rules in the complex wavelet packet domain, taking local adaptivity into account. As an image model, we will use Gaussian Scale Mixtures, thereby taking advantage of the directionality of the complex wavelets. Our results show that this technique is well capable of reconstructing fine details in the image, while removing all of the noise, at a relatively low computational cost. In particular, the complete reconstruction (including color correction, white balancing etc) of a 12 megapixel RAW image takes 3.5 sec on a recent mid-range GPU

    Locally adaptive complex wavelet-based demosaicing for color filter array images

    Get PDF
    A new approach for wavelet-based demosaicing of color filter array (CFA) images is presented. It is observed that conventional wavelet-based demosaicing results in demosaicing artifacts in high spatial frequency regions of the image. By proposing a framework of locally adaptive demosaicing in the wavelet domain, the presented method proposes computationally simple techniques to avoid these artifacts. In order to reduce computation time and memory requirements even more, we propose the use of the dual tree complex wavelet transform. The results show that wavelet-based demosaicing, using the proposed locally adaptive framework, is visually comparable with state-of-the-art pixel based demosaicing. This result is very promising when considering a low complexity wavelet-based demosaicing and denoising approach

    Computationally efficient locally adaptive demosaicing of color filter array images using the dual-tree complex wavelet packet transform

    Get PDF
    Most digital cameras use an array of alternating color filters to capture the varied colors in a scene with a single sensor chip. Reconstruction of a full color image from such a color mosaic is what constitutes demosaicing. In this paper, a technique is proposed that performs this demosaicing in a way that incurs a very low computational cost. This is done through a (dual-tree complex) wavelet interpretation of the demosaicing problem. By using a novel locally adaptive approach for demosaicing (complex) wavelet coefficients, we show that many of the common demosaicing artifacts can be avoided in an efficient way. Results demonstrate that the proposed method is competitive with respect to the current state of the art, but incurs a lower computational cost. The wavelet approach also allows for computationally effective denoising or deblurring approaches

    Multiresolution models in image restoration and reconstruction with medical and other applications

    Get PDF

    Color Filter Array Image Analysis for Joint Denoising and Demosaicking

    Get PDF
    Noise is among the worst artifacts that affect the perceptual quality of the output from a digital camera. While cost-effective and popular, single-sensor solutions to camera architectures are not adept at noise suppression. In this scheme, data are typically obtained via a spatial subsampling procedure implemented as a color filter array (CFA), a physical construction whereby each pixel location measures the intensity of the light corresponding to only a single color. Aside from undersampling, observations made under noisy conditions typically deteriorate the estimates of the full-color image in the reconstruction process commonly referred to as demosaicking or CFA interpolation in the literature. A typical CFA scheme involves the canonical color triples (i.e., red, green, blue), and the most prevalent arrangement is called Bayer pattern. As the general trend of increased image resolution continues due to prevalence of multimedia, the importance of interpolation is de-emphasized while the concerns for computational efficiency, noise, and color fidelity play an increasingly prominent role in the decision making of a digital camera architect. For instance, the interpolation artifacts become less noticeable as the size of the pixel shrinks with respect to the image features, while the decreased dimensionality of the pixel sensors on the complementary metal oxide semiconductor (CMOS) and charge coupled device (CCD) sensors make the pixels more susceptible to noise. Photon-limited influences are also evident in low-light photography, ranging from a specialty camera for precision measurement to indoor consumer photography. Sensor data, which can be interpreted as subsampled or incomplete image data, undergo a series of image processing procedures in order to produce a digital photograph. However, these same steps may amplify noise introduced during image acquisition. Specifically, the demosaicking step is a major source of conflict between the image processing pipeline and image sensor noise characterization because the interpolation methods give high priority to preserving the sharpness of edges and textures. In the presence of noise, noise patterns may form false edge structures; therefore, the distortions at the output are typically correlated with the signal in a complicated manner that makes noise modelling mathematically intractable. Thus, it is natural to conceive of a rigorous tradeoff between demosaicking and image denoising

    Color reproduction from noisy CFA data of single sensor digital cameras

    Get PDF
    2007-2008 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe

    Multiresolution image models and estimation techniques

    Get PDF

    Deep Mean-Shift Priors for Image Restoration

    Full text link
    In this paper we introduce a natural image prior that directly represents a Gaussian-smoothed version of the natural image distribution. We include our prior in a formulation of image restoration as a Bayes estimator that also allows us to solve noise-blind image restoration problems. We show that the gradient of our prior corresponds to the mean-shift vector on the natural image distribution. In addition, we learn the mean-shift vector field using denoising autoencoders, and use it in a gradient descent approach to perform Bayes risk minimization. We demonstrate competitive results for noise-blind deblurring, super-resolution, and demosaicing.Comment: NIPS 201
    corecore