120 research outputs found

    Only Words Count; the Rest Is Mere Chattering: A Cross-Disciplinary Approach to the Verbal Expression of Emotional Experience

    Get PDF
    The analysis of sequences of words and prosody, meter, and rhythm provided in an interview addressing the capacity to identify and describe emotions represents a powerful tool to reveal emotional processing. The ability to express and identify emotions was analyzed by means of the Toronto Structured Interview for Alexithymia (TSIA), and TSIA transcripts were analyzed by Natural Language Processing to shed light on verbal features. The brain correlates of the capacity to translate emotional experience into words were determined through cortical thickness measures. A machine learning methodology proved that individuals with deficits in identifying and describing emotions (n = 7) produced language distortions, frequently used the present tense of auxiliary verbs, and few possessive determiners, as well as scarcely connected the speech, in comparison to individuals without deficits (n = 7). Interestingly, they showed high cortical thickness at left temporal pole and low at isthmus of the right cingulate cortex. Overall, we identified the neuro-linguistic pattern of the expression of emotional experience

    Only Words Count; the Rest Is Mere Chattering: A Cross-Disciplinary Approach to the Verbal Expression of Emotional Experience

    Get PDF
    The analysis of sequences of words and prosody, meter, and rhythm provided in an interview addressing the capacity to identify and describe emotions represents a powerful tool to reveal emotional processing. The ability to express and identify emotions was analyzed by means of the Toronto Structured Interview for Alexithymia (TSIA), and TSIA transcripts were analyzed by Natural Language Processing to shed light on verbal features. The brain correlates of the capacity to translate emotional experience into words were determined through cortical thickness measures. A machine learning methodology proved that individuals with deficits in identifying and describing emotions (n = 7) produced language distortions, frequently used the present tense of auxiliary verbs, and few possessive determiners, as well as scarcely connected the speech, in comparison to individuals without deficits (n = 7). Interestingly, they showed high cortical thickness at left temporal pole and low at isthmus of the right cingulate cortex. Overall, we identified the neuro-linguistic pattern of the expression of emotional experience

    A COGNITIVE ARCHITECTURE FOR AMBIENT INTELLIGENCE

    Get PDF
    L’Ambient Intelligence (AmI) è caratterizzata dall’uso di sistemi pervasivi per monitorare l’ambiente e modificarlo secondo le esigenze degli utenti e rispettando vincoli definiti globalmente. Questi sistemi non possono prescindere da requisiti come la scalabilità e la trasparenza per l’utente. Una tecnologia che consente di raggiungere questi obiettivi è rappresentata dalle reti di sensori wireless (WSN), caratterizzate da bassi costi e bassa intrusività. Tuttavia, sebbene in grado di effettuare elaborazioni a bordo dei singoli nodi, le WSN non hanno da sole le capacità di elaborazione necessarie a supportare un sistema intelligente; d’altra parte senza questa attività di pre-elaborazione la mole di dati sensoriali può facilmente sopraffare un sistema centralizzato con un’eccessiva quantità di dettagli superflui. Questo lavoro presenta un’architettura cognitiva in grado di percepire e controllare l’ambiente di cui fa parte, basata su un nuovo approccio per l’estrazione di conoscenza a partire dai dati grezzi, attraverso livelli crescenti di astrazione. Le WSN sono utilizzate come strumento sensoriale pervasivo, le cui capacità computazionali vengono utilizzate per pre-elaborare i dati rilevati, in modo da consentire ad un sistema centralizzato intelligente di effettuare ragionamenti di alto livello. L’architettura proposta è stata utilizzata per sviluppare un testbed dotato degli strumenti hardware e software necessari allo sviluppo e alla gestione di applicazioni di AmI basate su WSN, il cui obiettivo principale sia il risparmio energetico. Per fare in modo che le applicazioni di AmI siano in grado di comunicare con il mondo esterno in maniera affidabile, per richiedere servizi ad agenti esterni, l’architettura è stata arricchita con un protocollo di gestione distribuita della reputazione. È stata inoltre sviluppata un’applicazione di esempio che sfrutta le caratteristiche del testbed, con l’obiettivo di controllare la temperatura in un ambiente lavorativo. Quest’applicazione rileva la presenza dell’utente attraverso un modulo per la fusione di dati multi-sensoriali basato su reti bayesiane, e sfrutta questa informazione in un controllore fuzzy multi-obiettivo che controlla gli attuatori sulla base delle preferenze dell’utente e del risparmio energetico.Ambient Intelligence (AmI) systems are characterized by the use of pervasive equipments for monitoring and modifying the environment according to users’ needs, and to globally defined constraints. Furthermore, such systems cannot ignore requirements about ubiquity, scalability, and transparency to the user. An enabling technology capable of accomplishing these goals is represented by Wireless Sensor Networks (WSNs), characterized by low-costs and unintrusiveness. However, although provided of in-network processing capabilities, WSNs do not exhibit processing features able to support comprehensive intelligent systems; on the other hand, without this pre-processing activities the wealth of sensory data may easily overwhelm a centralized AmI system, clogging it with superfluous details. This work proposes a cognitive architecture able to perceive, decide upon, and control the environment of which the system is part, based on a new approach to knowledge extraction from raw data, that addresses this issue at different abstraction levels. WSNs are used as the pervasive sensory tool, and their computational capabilities are exploited to remotely perform preliminary data processing. A central intelligent unit subsequently extracts higher-level concepts in order to carry on symbolic reasoning. The aim of the reasoning is to plan a sequence of actions that will lead the environment to a state as close as possible to the users’ desires, taking into account both implicit and explicit feedbacks from the users, while considering global system-driven goals, such as energy saving. The proposed conceptual architecture was exploited to develop a testbed providing the hardware and software tools for the development and management of AmI applications based on WSNs, whose main goal is energy saving for global sustainability. In order to make the AmI system able to communicate with the external world in a reliable way, when some services are required to external agents, the architecture was enriched with a distributed reputation management protocol. A sample application exploiting the testbed features was implemented for addressing temperature control in a work environment. Knowledge about the user’s presence is obtained through a multi-sensor data fusion module based on Bayesian networks, and this information is exploited by a multi-objective fuzzy controller that operates on actuators taking into account users’ preference and energy consumption constraints

    An evolutionary behavioral model for decision making

    Get PDF
    For autonomous agents the problem of deciding what to do next becomes increasingly complex when acting in unpredictable and dynamic environments pursuing multiple and possibly conflicting goals. One of the most relevant behavior-based model that tries to deal with this problem is the one proposed by Maes, the Bbehavior Network model. This model proposes a set of behaviors as purposive perception-action units which are linked in a nonhierarchical network, and whose behavior selection process is orchestrated by spreading activation dynamics. In spite of being an adaptive model (in the sense of self-regulating its own behavior selection process), and despite the fact that several extensions have been proposed in order to improve the original model adaptability, there is not a robust model yet that can self-modify adaptively both the topological structure and the functional purpose\ud of the network as a result of the interaction between the agent and its environment. Thus, this work proffers an innovative hybrid model driven by gene expression programming, which makes two main contributions: (1) given an initial set of meaningless and unconnected units, the evolutionary mechanism is able to build well-defined and robust behavior networks which are adapted and specialized to concrete internal agent's needs and goals; and (2)\ud the same evolutionary mechanism is able to assemble quite\ud complex structures such as deliberative plans (which operate in the long-term) and problem-solving strategies

    Longterm Generalized Actions for Smart, Autonomous Robot Agents

    Get PDF
    Creating intelligent artificial systems, and in particular robots, that improve themselves just like humans do is one of the most ambitious goals in robotics and machine learning. The concept of robot experience exists for some time now, but has up to now not fully found its way into autonomous robots. This thesis is devoted to both, analyzing the underlying requirements for enabling robot learning from experience and actually implementing it on real robot hardware. For effective robot learning from experience I present and discuss three main requirements: (a ) Clearly expressing what a robot should do, on a vague, abstract level I introduce Generalized Plans as a means to express the intention rather than the actual action sequence of a task, removing as much task specific knowledge as possible. (a ) Defining, collecting, and analyzing robot experiences to enable robots to improve I present Episodic Memories as a container for all collected robot experiences for any arbitrary task and create sophisticated action (effect) prediction models from them, allowing robots to make better decisions. (a ) Properly abstracting from reality and dealing with failures in the domain they occurred in I propose failure handling strategies, a failure taxonomy extensible through experience, and discuss the relationship between symbolic/discrete and subsymbolic/continuous systems in terms of robot plans interacting with real world sensors and actuators. I concentrate on the domain of human-scale robot activities, specifically on doing household chores. Tasks in this domain offer many repeating patterns and are ideal candidates for abstracting, encapsulating, and modularizing robot plans into a more general form. This way, very similar plan structures are transformed into parameters that change the behavior of the robot while performing the task, making the plans more flexible. While performing tasks, robots encounter the same or similar situations over and over again. Albeit humans are able to benefit from this and improve at what they do, robots in general lack this ability. This thesis presents techniques for collecting and making robot experiences accessible to robots and outside observers alike, answering high level questions such as What are good spots to stand at for grasping objects from the fridge? or Which objects are especially difficult to grasp with two hands while they are in the oven? . By structuring and tapping into a robot's memory, it can make more informed decisions that are not based on manually encoded information, but self-improved behavior. To this end, I present several experience-based approaches to improve a robot's autonomous decisions, such as parameter choices, during execution time. Robots that interact with the real world are bound to deal with unexpected events and must properly react to failures of any kind of action. I present an extensible failure model that suits the structure of Generalized Plans and Episodic Memories and make clear how each module should deal with their own failures rather than directly handing them up to a governing cognitive architecture. In addition, I make a distinction between discrete parametrizations of Generalized Plans and continuous low level components, and how to translate between the two

    Algorithmic Compositional Methods and their Role in Genesis: A Multi-Functional Real-Time Computer Music System

    Get PDF
    Algorithmic procedures have been applied in computer music systems to generate compositional products using conventional musical formalism, extensions of such musical formalism and extra-musical disciplines such as mathematical models. This research investigates the applicability of such algorithmic methodologies for real-time musical composition, culminating in Genesis, a multi-functional real-time computer music system written for Mac OS X in the SuperCollider object-oriented programming language, and contained in the accompanying DVD. Through an extensive graphical user interface, Genesis offers musicians the opportunity to explore the application of the sonic features of real-time sound-objects to designated generative processes via different models of interaction such as unsupervised musical composition by Genesis and networked control of external Genesis instances. As a result of the applied interactive, generative and analytical methods, Genesis forms a unique compositional process, with a compositional product that reflects the character of its interactions between the sonic features of real-time sound-objects and its selected algorithmic procedures. Within this thesis, the technologies involved in algorithmic methodologies used for compositional processes, and the concepts that define their constructs are described, with consequent detailing of their selection and application in Genesis, with audio examples of algorithmic compositional methods demonstrated on the accompanying DVD. To demonstrate the real-time compositional abilities of Genesis, free explorations with instrumentalists, along with studio recordings of the compositional processes available in Genesis are presented in audiovisual examples contained in the accompanying DVD. The evaluation of the Genesis system’s capability to form a real-time compositional process, thereby maintaining real-time interaction between the sonic features of real-time sound objects and its selected algorithmic compositional methods, focuses on existing evaluation techniques founded in HCI and the qualitative issues such evaluation methods present. In terms of the compositional products generated by Genesis, the challenges in quantifying and qualifying its compositional outputs are identified, demonstrating the intricacies of assessing generative methods of compositional processes, and their impact on a resulting compositional product. The thesis concludes by considering further advances and applications of Genesis, and inviting further dissemination of the Genesis system and promotion of research into evaluative methods of generative techniques, with the hope that this may provide additional insight into the relative success of products generated by real-time algorithmic compositional processes

    Building performance simulation in the brave new world of Artificial Intelligence and Digital Twins : a systematic review

    Get PDF
    In an increasingly digital world, there are fast-paced developments in fields such as Artificial Intelligence, Machine Learning, Data Mining, Digital Twins, Cyber-Physical Systems and the Internet of Things. This paper reviews and discusses how these new emerging areas relate to the traditional domain of building performance simulation. It explores the boundaries between building simulation and these other fields in order to identify conceptual differences and similarities, strengths and limitations of each of these areas. The paper critiques common notions about these new domains and how they relate to building simulation, reviewing how the field of building performance may evolve and benefit from the new developments

    From Musical Grammars to Music Cognition in the 1980s and 1990s: Highlights of the History of Computer-Assisted Music Analysis

    Get PDF
    While approaches that had already established historical precedents – computer-assisted analytical approaches drawing on statistics and information theory – developed further, many research projects conducted during the 1980s aimed at the development of new methods of computer-assisted music analysis. Some projects discovered new possibilities related to using computers to simulate human cognition and perception, drawing on cognitive musicology and Artificial Intelligence, areas that were themselves spurred on by new technical developments and by developments in computer program design. The 1990s ushered in revolutionary methods of music analysis, especially those drawing on Artificial Intelligence research. Some of these approaches started to focus on musical sound, rather than scores. They allowed music analysis to focus on how music is actually perceived. In some approaches, the analysis of music and of music cognition merged. This article provides an overview of computer-assisted music analysis of the 1980s and 1990s, as it relates to music cognition. Selected approaches are being discussed

    Prise de décisions de cadres confrontés à un environnement dynamique, coopératif et compétitif. Une approche en ergonomie cognitive (application à l'entraînement professionnel de handball de match)

    Get PDF
    Ce travail, adossé au paradigme de la prise de décision en situation (Klein, Orasanu, Calderwood, & Zsambok, 1993) porte sur le processus de prise de décisions d entraîneurs de handball au cours du match. La situation de match, caractérisée par ses aspects dynamiques, coopératifs et compétitifs, donne une conception chaotique de ce processus (Bowes & Jones, 2006). C est pourquoi, son étude nécessite de mobiliser plusieurs approches et modèles théoriques (e.g., cognition collective, théorie du focus régulateur [Higgins, 1997], théorie du contrôle [Carver & Scheier, 1982], modèles de persuasion [Chaiken, 1980 ; Petty & Cacioppo, 1986], communication dialogique [Goffman, 1961], modèle de l activité coopérative [Hoc, 2001]). Les données, issues de situations réelles de matchs (protocoles verbaux, choix de système défensif) ou d entretiens (e.g., auto-confrontations avec technique de rappel stimulé) font l objet d analyses quantitatives ou qualitatives. Les résultats révèlent les connaissances procédurales des entraîneurs concernant : la gestion de l équipe, les informations permettant aux joueurs d acquérir ou de mettre à jour des structures de connaissances adaptées à la situation, et les tentatives d influence des arbitres. Ces connaissances procédurales sont fonction des conditions du match (notamment le rapport d opposition entre les deux équipes) et influencées par des connaissances sur le jeu et les caractéristiques des joueurs. Différents modes de contrôle cognitif et styles de coaching sont aussi mis en évidence. Ainsi, le processus de prise de décisions d entraîneurs experts possède des régularités et suit des règles génériques, des heuristiques ou patterns.This work, based on naturalistic decision-making paradigm (Klein, Orasanu, Calderwood, & Zsambok, 1993) is focused on team sport (handball) coaches decision-making during match. The coaching activity is dynamic and chaotic (Bowes & Jones, 2006) and generated by on-going events, especially during match. Therefore, coaches decision-making studies require to use many theoretical approaches and models (e.g., team cognition, regulatory focus theory [Higgins, 1997], control theory [Carver & Scheier, 1982], persuasive models [Chaiken, 1980 ; Petty & Cacioppo, 1986], dialogic communication [Goffman, 1961], cooperative activity model [Hoc, 2001]). Data have been collected from official games (verbal protocols, defense system choices) or interviews (self-confrontation with stimulated technique recall) and analysed with quantitative and qualitative approach. Results highlight procedural knowledge concerning team management, information allowing players to acquire or update knowledge structures, and influence referee. This procedural knowledge varied depending on the game conditions and is influenced by the coach s deep knowledge of the game and player profiles. Results highlight also different cognitive control modes, and different coaching styles. There exist contextual factors effects on procedural knowledge and cognitive control modes. Among these factors, ratio of strength between the two teams appears especially salient. Therefore, our empirical studies show that expert coaches decision-making process have some regularity and follow generic rules, heuristics or patternsPARIS11-SCD-Bib. électronique (914719901) / SudocSudocFranceF
    • …
    corecore