229,068 research outputs found

    Feasibility Study of Enabling V2X Communications by LTE-Uu Radio Interface

    Full text link
    Compared with the legacy wireless networks, the next generation of wireless network targets at different services with divergent QoS requirements, ranging from bandwidth consuming video service to moderate and low date rate machine type services, and supporting as well as strict latency requirements. One emerging new service is to exploit wireless network to improve the efficiency of vehicular traffic and public safety. However, the stringent packet end-to-end (E2E) latency and ultra-low transmission failure rates pose challenging requirements on the legacy networks. In other words, the next generation wireless network needs to support ultra-reliable low latency communications (URLLC) involving new key performance indicators (KPIs) rather than the conventional metric, such as cell throughput in the legacy systems. In this paper, a feasibility study on applying today's LTE network infrastructure and LTE-Uu air interface to provide the URLLC type of services is performed, where the communication takes place between two traffic participants (e.g., vehicle-to-vehicle and vehicle-to-pedestrian). To carry out this study, an evaluation methodology of the cellular vehicle-to-anything (V2X) communication is proposed, where packet E2E latency and successful transmission rate are considered as the key performance indicators (KPIs). Then, we describe the simulation assumptions for the evaluation. Based on them, simulation results are depicted that demonstrate the performance of the LTE network in fulfilling new URLLC requirements. Moreover, sensitivity analysis is also conducted regarding how to further improve system performance, in order to enable new emerging URLLC services.Comment: Accepted by IEEE/CIC ICCC 201

    A Novel Framework for Online Amnesic Trajectory Compression in Resource-constrained Environments

    Full text link
    State-of-the-art trajectory compression methods usually involve high space-time complexity or yield unsatisfactory compression rates, leading to rapid exhaustion of memory, computation, storage and energy resources. Their ability is commonly limited when operating in a resource-constrained environment especially when the data volume (even when compressed) far exceeds the storage limit. Hence we propose a novel online framework for error-bounded trajectory compression and ageing called the Amnesic Bounded Quadrant System (ABQS), whose core is the Bounded Quadrant System (BQS) algorithm family that includes a normal version (BQS), Fast version (FBQS), and a Progressive version (PBQS). ABQS intelligently manages a given storage and compresses the trajectories with different error tolerances subject to their ages. In the experiments, we conduct comprehensive evaluations for the BQS algorithm family and the ABQS framework. Using empirical GPS traces from flying foxes and cars, and synthetic data from simulation, we demonstrate the effectiveness of the standalone BQS algorithms in significantly reducing the time and space complexity of trajectory compression, while greatly improving the compression rates of the state-of-the-art algorithms (up to 45%). We also show that the operational time of the target resource-constrained hardware platform can be prolonged by up to 41%. We then verify that with ABQS, given data volumes that are far greater than storage space, ABQS is able to achieve 15 to 400 times smaller errors than the baselines. We also show that the algorithm is robust to extreme trajectory shapes.Comment: arXiv admin note: substantial text overlap with arXiv:1412.032
    • …
    corecore