3,628 research outputs found

    Implementation-level analysis of cryptographic protocols and their applications to e-voting systems

    Get PDF
    Formal verification of security properties of both cryptographic operations, such as encryption, and protocols based on them, such as TLS, has been the goal of a substantial research effort in the last three decades. One fundamental limitation in the verification of these security properties is that analyses are typically carried out at the design level and hence they do not provide reliable guarantees on the implementations of these operations/protocols. To overcome this limitation, in this thesis we aim at establishing formally justified cryptographic guarantees directly at the implementation level for systems that are coded in Java and use cryptography. Our approach is based on a general framework for the cryptographic verification of Java programs (the CVJ framework) which formally links cryptographic indistinguishability properties and noninterference properties. In this way, it enables existing tools that can check standard noninterference properties, but a priori cannot deal with cryptography, to also establish cryptographic privacy properties for Java systems. The CVJ framework is stated and proven for a Java-like formal language which however does not cover all the data types and features commonly used in Java programs. Moreover, the framework originally supports only one cryptographic operation, namely public-key encryption. The first contribution of this thesis is hence to extend and to instantiate the CVJ framework in order to make it more widely applicable. We extend the underlying formal language with some features of Java which have not been captured yet, such as concurrency, and we restate and prove all the results of the framework to carry them over into this extended language. We then further instantiate the framework with additional cryptographic operations: digital signatures and public-key encryption, both now also including a public-key infrastructure, (private) symmetric encryption, and nonce generation. The methods and techniques developed within the CVJ framework are relevant and applicable independently of any specific tool employed. However, to illustrate the usefulness of this approach, we apply the framework along with two verification tools for Java programs, namely the fully automated static checker Joana and the interactive theorem prover KeY, to establish strong cryptographic privacy properties for systems which use cryptography, such as client-server applications and e-voting systems. In this context, the second major contribution of this thesis is the design, the implementation, and the deployment of a novel remote voting system called sElect (secure/simple elections). sElect is designed to be particularly simple and lightweight in terms of its structure, the cryptography it uses, and the user experience. One of its unique features is a fully automated procedure which does not require any user interaction and it is triggered as soon as voters look at the election result, allowing them to verify that their vote has been properly counted. The component of sElect which provides vote privacy is implemented in Java such that we can establish cryptographic guarantees directly on its implementation: by combining the techniques of the CVJ framework with a hybrid approach for proving noninterference, we are able to show that the Java implementation ensures strong cryptographic privacy of the votes cast with our proposed voting system. sElect is therefore the first full-fledged e-voting system with strong cryptographic security guarantees not only at the design level, but also on its implementation

    Formal Verification of Security Protocol Implementations: A Survey

    Get PDF
    Automated formal verification of security protocols has been mostly focused on analyzing high-level abstract models which, however, are significantly different from real protocol implementations written in programming languages. Recently, some researchers have started investigating techniques that bring automated formal proofs closer to real implementations. This paper surveys these attempts, focusing on approaches that target the application code that implements protocol logic, rather than the libraries that implement cryptography. According to these approaches, libraries are assumed to correctly implement some models. The aim is to derive formal proofs that, under this assumption, give assurance about the application code that implements the protocol logic. The two main approaches of model extraction and code generation are presented, along with the main techniques adopted for each approac

    Formally based semi-automatic implementation of an open security protocol

    Get PDF
    International audienceThis paper presents an experiment in which an implementation of the client side of the SSH Transport Layer Protocol (SSH-TLP) was semi-automatically derived according to a model-driven development paradigm that leverages formal methods in order to obtain high correctness assurance. The approach used in the experiment starts with the formalization of the protocol at an abstract level. This model is then formally proved to fulfill the desired secrecy and authentication properties by using the ProVerif prover. Finally, a sound Java implementation is semi-automatically derived from the verified model using an enhanced version of the Spi2Java framework. The resulting implementation correctly interoperates with third party servers, and its execution time is comparable with that of other manually developed Java SSH-TLP client implementations. This case study demonstrates that the adopted model-driven approach is viable even for a real security protocol, despite the complexity of the models needed in order to achieve an interoperable implementation

    High-level Cryptographic Abstractions

    Full text link
    The interfaces exposed by commonly used cryptographic libraries are clumsy, complicated, and assume an understanding of cryptographic algorithms. The challenge is to design high-level abstractions that require minimum knowledge and effort to use while also allowing maximum control when needed. This paper proposes such high-level abstractions consisting of simple cryptographic primitives and full declarative configuration. These abstractions can be implemented on top of any cryptographic library in any language. We have implemented these abstractions in Python, and used them to write a wide variety of well-known security protocols, including Signal, Kerberos, and TLS. We show that programs using our abstractions are much smaller and easier to write than using low-level libraries, where size of security protocols implemented is reduced by about a third on average. We show our implementation incurs a small overhead, less than 5 microseconds for shared key operations and less than 341 microseconds (< 1%) for public key operations. We also show our abstractions are safe against main types of cryptographic misuse reported in the literature

    Provably correct Java implementations of Spi Calculus security protocols specifications

    Get PDF
    Spi Calculus is an untyped high level modeling language for security protocols, used for formal protocols specification and verification. In this paper, a type system for the Spi Calculus and a translation function are formally defined, in order to formalize the refinement of a Spi Calculus specification into a Java implementation. The Java implementation generated by the translation function uses a custom Java library. Formal conditions on such library are stated, so that, if the library implementation code satisfies such conditions, then the generated Java implementation correctly simulates the Spi Calculus specification. A verified implementation of part of the custom library is further presente

    Proceedings of International Workshop "Global Computing: Programming Environments, Languages, Security and Analysis of Systems"

    Get PDF
    According to the IST/ FET proactive initiative on GLOBAL COMPUTING, the goal is to obtain techniques (models, frameworks, methods, algorithms) for constructing systems that are flexible, dependable, secure, robust and efficient. The dominant concerns are not those of representing and manipulating data efficiently but rather those of handling the co-ordination and interaction, security, reliability, robustness, failure modes, and control of risk of the entities in the system and the overall design, description and performance of the system itself. Completely different paradigms of computer science may have to be developed to tackle these issues effectively. The research should concentrate on systems having the following characteristics: ā€¢ The systems are composed of autonomous computational entities where activity is not centrally controlled, either because global control is impossible or impractical, or because the entities are created or controlled by different owners. ā€¢ The computational entities are mobile, due to the movement of the physical platforms or by movement of the entity from one platform to another. ā€¢ The configuration varies over time. For instance, the system is open to the introduction of new computational entities and likewise their deletion. The behaviour of the entities may vary over time. ā€¢ The systems operate with incomplete information about the environment. For instance, information becomes rapidly out of date and mobility requires information about the environment to be discovered. The ultimate goal of the research action is to provide a solid scientific foundation for the design of such systems, and to lay the groundwork for achieving effective principles for building and analysing such systems. This workshop covers the aspects related to languages and programming environments as well as analysis of systems and resources involving 9 projects (AGILE , DART, DEGAS , MIKADO, MRG, MYTHS, PEPITO, PROFUNDIS, SECURE) out of the 13 founded under the initiative. After an year from the start of the projects, the goal of the workshop is to fix the state of the art on the topics covered by the two clusters related to programming environments and analysis of systems as well as to devise strategies and new ideas to profitably continue the research effort towards the overall objective of the initiative. We acknowledge the Dipartimento di Informatica and Tlc of the University of Trento, the Comune di Rovereto, the project DEGAS for partially funding the event and the Events and Meetings Office of the University of Trento for the valuable collaboration
    • ā€¦
    corecore