32,585 research outputs found

    Toward the automated assessment of entity-relationship diagrams

    Get PDF
    The need to interpret imprecise diagrams (those with malformed, missing or extraneous features) occurs in the automated assessment of diagrams. We outline our proposal for an architecture to enable the interpretation of imprecise diagrams. We discuss our preliminary work on an assessment tool, developed within this architecture, for automatically grading answers to a computer architecture examination question. Early indications are that performance is similar to that of human markers. We will be using Entity-Relationship Diagrams (ERDs) as the primary application area for our investigation of automated assessment. This paper will detail our reasons for choosing this area and outline the work ahead

    Merging process models and plant topology

    Get PDF
    The paper discusses the merging of first principles process models with plant topology derived in an automated way from a process drawing. The resulting structural models should make it easier for a range of methods from the literature to be applied to industrial-scale problems in process operation and design. © 2011 Zhejiang University

    TinkerCell: Modular CAD Tool for Synthetic Biology

    Get PDF
    Synthetic biology brings together concepts and techniques from engineering and biology. In this field, computer-aided design (CAD) is necessary in order to bridge the gap between computational modeling and biological data. An application named TinkerCell has been created in order to serve as a CAD tool for synthetic biology. TinkerCell is a visual modeling tool that supports a hierarchy of biological parts. Each part in this hierarchy consists of a set of attributes that define the part, such as sequence or rate constants. Models that are constructed using these parts can be analyzed using various C and Python programs that are hosted by TinkerCell via an extensive C and Python API. TinkerCell supports the notion of a module, which are networks with interfaces. Such modules can be connected to each other, forming larger modular networks. Because TinkerCell associates parameters and equations in a model with their respective part, parts can be loaded from databases along with their parameters and rate equations. The modular network design can be used to exchange modules as well as test the concept of modularity in biological systems. The flexible modeling framework along with the C and Python API allows TinkerCell to serve as a host to numerous third-party algorithms. TinkerCell is a free and open-source project under the Berkeley Software Distribution license. Downloads, documentation, and tutorials are available at www.tinkercell.com.Comment: 23 pages, 20 figure

    A comparative evaluation of dynamic visualisation tools

    Get PDF
    Despite their potential applications in software comprehension, it appears that dynamic visualisation tools are seldom used outside the research laboratory. This paper presents an empirical evaluation of five dynamic visualisation tools - AVID, Jinsight, jRMTool, Together ControlCenter diagrams and Together ControlCenter debugger. The tools were evaluated on a number of general software comprehension and specific reverse engineering tasks using the HotDraw objectoriented framework. The tasks considered typical comprehension issues, including identification of software structure and behaviour, design pattern extraction, extensibility potential, maintenance issues, functionality location, and runtime load. The results revealed that the level of abstraction employed by a tool affects its success in different tasks, and that tools were more successful in addressing specific reverse engineering tasks than general software comprehension activities. It was found that no one tool performs well in all tasks, and some tasks were beyond the capabilities of all five tools. This paper concludes with suggestions for improving the efficacy of such tools

    Automated Functional Testing based on the Navigation of Web Applications

    Full text link
    Web applications are becoming more and more complex. Testing such applications is an intricate hard and time-consuming activity. Therefore, testing is often poorly performed or skipped by practitioners. Test automation can help to avoid this situation. Hence, this paper presents a novel approach to perform automated software testing for web applications based on its navigation. On the one hand, web navigation is the process of traversing a web application using a browser. On the other hand, functional requirements are actions that an application must do. Therefore, the evaluation of the correct navigation of web applications results in the assessment of the specified functional requirements. The proposed method to perform the automation is done in four levels: test case generation, test data derivation, test case execution, and test case reporting. This method is driven by three kinds of inputs: i) UML models; ii) Selenium scripts; iii) XML files. We have implemented our approach in an open-source testing framework named Automatic Testing Platform. The validation of this work has been carried out by means of a case study, in which the target is a real invoice management system developed using a model-driven approach.Comment: In Proceedings WWV 2011, arXiv:1108.208

    NLO Cross Sections for the LHC using GOLEM: Status and Prospects

    Get PDF
    In this talk we review the GOLEM approach to one-loop calculations and present an automated implementation of this technique. This method is based on Feynman diagrams and an advanced reduction of one-loop tensor integrals which avoids numerical instabilities. We have extended our one-loop integral library golem95 with an automated one-loop matrix element generator to compute the virtual corrections of the process qqˉ→bbˉbbˉq\bar{q}\to b\bar{b}b\bar{b}. The implementation of the virtual matrix element has been interfaced with tree-level Monte Carlo programs to provide the full result for the above process.Comment: 8 pages, 1 figure, contribution to the proceedings of the 9th International Symposium on Radiative Corrections (RADCOR 2009), October 25-30 2009, Ascona, Switzerlan

    Generating natural language specifications from UML class diagrams

    Get PDF
    Early phases of software development are known to be problematic, difficult to manage and errors occurring during these phases are expensive to correct. Many systems have been developed to aid the transition from informal Natural Language requirements to semistructured or formal specifications. Furthermore, consistency checking is seen by many software engineers as the solution to reduce the number of errors occurring during the software development life cycle and allow early verification and validation of software systems. However, this is confined to the models developed during analysis and design and fails to include the early Natural Language requirements. This excludes proper user involvement and creates a gap between the original requirements and the updated and modified models and implementations of the system. To improve this process, we propose a system that generates Natural Language specifications from UML class diagrams. We first investigate the variation of the input language used in naming the components of a class diagram based on the study of a large number of examples from the literature and then develop rules for removing ambiguities in the subset of Natural Language used within UML. We use WordNet,a linguistic ontology, to disambiguate the lexical structures of the UML string names and generate semantically sound sentences. Our system is developed in Java and is tested on an independent though academic case study

    Trends and concerns in digital cartography

    Get PDF
    CISRG discussion paper ;
    • …
    corecore