43 research outputs found

    Research on real-time physics-based deformation for haptic-enabled medical simulation

    Full text link
    This study developed a multiple effective visuo-haptic surgical engine to handle a variety of surgical manipulations in real-time. Soft tissue models are based on biomechanical experiment and continuum mechanics for greater accuracy. Such models will increase the realism of future training systems and the VR/AR/MR implementations for the operating room

    Robust GPU-based Virtual Reality Simulation of Radio Frequency Ablations for Various Needle Geometries and Locations

    Full text link
    Purpose: Radio-frequency ablations play an important role in the therapy of malignant liver lesions. The navigation of a needle to the lesion poses a challenge for both the trainees and intervening physicians. Methods: This publication presents a new GPU-based, accurate method for the simulation of radio-frequency ablations for lesions at the needle tip in general and for an existing visuo-haptic 4D VR simulator. The method is implemented real-time capable with Nvidia CUDA. Results: It performs better than a literature method concerning the theoretical characteristic of monotonic convergence of the bioheat PDE and a in vitro gold standard with significant improvements (p < 0.05) in terms of Pearson correlations. It shows no failure modes or theoretically inconsistent individual simulation results after the initial phase of 10 seconds. On the Nvidia 1080 Ti GPU it achieves a very high frame rendering performance of >480 Hz. Conclusion: Our method provides a more robust and safer real-time ablation planning and intraoperative guidance technique, especially avoiding the over-estimation of the ablated tissue death zone, which is risky for the patient in terms of tumor recurrence. Future in vitro measurements and optimization shall further improve the conservative estimate.Comment: 18 pages, 14 figures, 1 table, 2 algorithms, 2 movie

    Influence of Haptic Communication on a Shared Manual Task in a Collaborative Virtual Environment

    Get PDF
    International audienceWith the advent of new haptic feedback devices, researchers are giving serious consideration to the incorporation of haptic communication in collaborative virtual environments. For instance, haptic interactions based tools can be used for medical and related education whereby students can train in minimal invasive surgery using virtual reality before approaching human subjects. To design virtual environments that support haptic communication, a deeper understanding of humans' haptic interactions is required. In this paper, human's haptic collaboration is investigated. A collaborative virtual environment was designed to support performing a shared manual task. To evaluate this system, 60 medical students participated to an experimental study. Participants were asked to perform in dyads a needle insertion task after a training period. Results show that compared to conventional training methods, a visual-haptic training improves user's collaborative performance. In addition, we found that haptic interaction influences the partners' verbal communication when sharing haptic information. This indicates that the haptic communication training changes the nature of the users' mental representations. Finally, we found that haptic interactions increased the sense of copresence in the virtual environment: haptic communication facilitates users' collaboration in a shared manual task within a shared virtual environment. Design implications for including haptic communication in virtual environments are outlined

    Recent Developments and Future Challenges in Medical Mixed Reality

    Get PDF
    As AR technology matures, we have seen many applicationsemerge in entertainment, education and training. However, the useof AR is not yet common in medical practice, despite the great po-tential of this technology to help not only learning and training inmedicine, but also in assisting diagnosis and surgical guidance. Inthis paper, we present recent trends in the use of AR across all med-ical specialties and identify challenges that must be overcome tonarrow the gap between academic research and practical use of ARin medicine. A database of 1403 relevant research papers publishedover the last two decades has been reviewed by using a novel re-search trend analysis method based on text mining algorithm. Wesemantically identified 10 topics including varies of technologiesand applications based on the non-biased and in-personal cluster-ing results from the Latent Dirichlet Allocatio (LDA) model andanalysed the trend of each topic from 1995 to 2015. The statisticresults reveal a taxonomy that can best describes the developmentof the medical AR research during the two decades. And the trendanalysis provide a higher level of view of how the taxonomy haschanged and where the focus will goes. Finally, based on the valu-able results, we provide a insightful discussion to the current limi-tations, challenges and future directions in the field. Our objectiveis to aid researchers to focus on the application areas in medicalAR that are most needed, as well as providing medical practitioners with latest technology advancements

    A comprehensive description of the competencies required for the performance of an ultrasound-guided axillary brachial plexus blockade

    Get PDF
    We addressed four research questions, each relating to the training and assessment of the competencies associated with the performance of ultrasound-guided axillary brachial plexus blockade (USgABPB). These were: (i) What are the most important determinants of learning of USgABPB? (ii) What is USgABPB? What are the errors most likely to occur when trainees learn to perform this procedure? (iii) How should end-user input be applied to the development of a novel USgABPB simulator? (iv) Does structured simulation based training influence novice learning of the procedure positively? We demonstrated that the most important determinants of learning USgABPB are: (a) Access to a formal structured training programme. (b) Frequent exposure to clinical learning opportunity in an appropriate setting (c) A clinical learning opporunity requires an appropriate patient, trainee and teacher being present at the same time, in an appropriate environment. We carried out a comprehensive description of the procedure. We performed a formal task analysis of USgABPB, identifying (i) 256 specific tasks associated with the safe and effective performance of the procedure, and (ii) the 20 most critical errors likely to occur in this setting. We described a methodology for this and collected data based on detailed, sequential evaluation of prototypes by trainees in anaesthesia. We carried out a pilot randomised control trial assessing the effectiveness of a USgABPB simulator during its development. Our data did not enable us to draw a reliable conclusion to this question; the trail did provide important new learning (as a pilot) to inform future investigation of this question. We believe that the ultimate goal of designing effective simulation-based training and assessment of ultrasound-guided regional anaesthesia is closer to realisation as a result of this work. It remains to be proven if this approach will have a positive impact on procedural performance, and more importantly improve patient outcomes

    Applying artificial intelligence to big data in hepatopancreatic and biliary surgery: a scoping review

    Get PDF
    Aim: Artificial Intelligence (AI) and its applications in healthcare are rapidly developing. The healthcare industry generates ever-increasing volumes of data that should be used to improve patient care. This review aims to examine the use of AI and its applications in hepatopancreatic and biliary (HPB) surgery, highlighting studies leveraging large datasets.Methods: A PRISMA-ScR compliant scoping review using Medline and Google Scholar databases was performed (5th August 2022). Studies focusing on the development and application of AI to HPB surgery were eligible for inclusion. We undertook a conceptual mapping exercise to identify key areas where AI is under active development for use in HPB surgery. We considered studies and concepts in the context of patient pathways - before surgery (including diagnostics), around the time of surgery (supporting interventions) and after surgery (including prognostication).Results: 98 studies were included. Most studies were performed in China or the USA (n = 45). Liver surgery was the most common area studied (n = 51). Research into AI in HPB surgery has increased rapidly in recent years, with almost two-thirds published since 2019 (61/98). Of these studies, 11 have focused on using “big data” to develop and apply AI models. Nine of these studies came from the USA and nearly all focused on the application of Natural Language Processing. We identified several critical conceptual areas where AI is under active development, including improving preoperative optimization, image guidance and sensor fusion-assisted surgery, surgical planning and simulation, natural language processing of clinical reports for deep phenotyping and prediction, and image-based machine learning.Conclusion: Applications of AI in HPB surgery primarily focus on image analysis and computer vision to address diagnostic and prognostic uncertainties. Virtual 3D and augmented reality models to support complex HPB interventions are also under active development and likely to be used in surgical planning and education. In addition, natural language processing may be helpful in the annotation and phenotyping of disease, leading to new scientific insights

    Haptics: Science, Technology, Applications

    Get PDF
    This open access book constitutes the proceedings of the 13th International Conference on Human Haptic Sensing and Touch Enabled Computer Applications, EuroHaptics 2022, held in Hamburg, Germany, in May 2022. The 36 regular papers included in this book were carefully reviewed and selected from 129 submissions. They were organized in topical sections as follows: haptic science; haptic technology; and haptic applications

    Navigation system based in motion tracking sensor for percutaneous renal access

    Get PDF
    Tese de Doutoramento em Engenharia BiomédicaMinimally-invasive kidney interventions are daily performed to diagnose and treat several renal diseases. Percutaneous renal access (PRA) is an essential but challenging stage for most of these procedures, since its outcome is directly linked to the physician’s ability to precisely visualize and reach the anatomical target. Nowadays, PRA is always guided with medical imaging assistance, most frequently using X-ray based imaging (e.g. fluoroscopy). Thus, radiation on the surgical theater represents a major risk to the medical team, where its exclusion from PRA has a direct impact diminishing the dose exposure on both patients and physicians. To solve the referred problems this thesis aims to develop a new hardware/software framework to intuitively and safely guide the surgeon during PRA planning and puncturing. In terms of surgical planning, a set of methodologies were developed to increase the certainty of reaching a specific target inside the kidney. The most relevant abdominal structures for PRA were automatically clustered into different 3D volumes. For that, primitive volumes were merged as a local optimization problem using the minimum description length principle and image statistical properties. A multi-volume Ray Cast method was then used to highlight each segmented volume. Results show that it is possible to detect all abdominal structures surrounding the kidney, with the ability to correctly estimate a virtual trajectory. Concerning the percutaneous puncturing stage, either an electromagnetic or optical solution were developed and tested in multiple in vitro, in vivo and ex vivo trials. The optical tracking solution aids in establishing the desired puncture site and choosing the best virtual puncture trajectory. However, this system required a line of sight to different optical markers placed at the needle base, limiting the accuracy when tracking inside the human body. Results show that the needle tip can deflect from its initial straight line trajectory with an error higher than 3 mm. Moreover, a complex registration procedure and initial setup is needed. On the other hand, a real-time electromagnetic tracking was developed. Hereto, a catheter was inserted trans-urethrally towards the renal target. This catheter has a position and orientation electromagnetic sensor on its tip that function as a real-time target locator. Then, a needle integrating a similar sensor is used. From the data provided by both sensors, one computes a virtual puncture trajectory, which is displayed in a 3D visualization software. In vivo tests showed a median renal and ureteral puncture times of 19 and 51 seconds, respectively (range 14 to 45 and 45 to 67 seconds). Such results represent a puncture time improvement between 75% and 85% when comparing to state of the art methods. 3D sound and vibrotactile feedback were also developed to provide additional information about the needle orientation. By using these kind of feedback, it was verified that the surgeon tends to follow a virtual puncture trajectory with a reduced amount of deviations from the ideal trajectory, being able to anticipate any movement even without looking to a monitor. Best results show that 3D sound sources were correctly identified 79.2 ± 8.1% of times with an average angulation error of 10.4º degrees. Vibration sources were accurately identified 91.1 ± 3.6% of times with an average angulation error of 8.0º degrees. Additionally to the EMT framework, three circular ultrasound transducers were built with a needle working channel. One explored different manufacture fabrication setups in terms of the piezoelectric materials, transducer construction, single vs. multi array configurations, backing and matching material design. The A-scan signals retrieved from each transducer were filtered and processed to automatically detect reflected echoes and to alert the surgeon when undesirable anatomical structures are in between the puncture path. The transducers were mapped in a water tank and tested in a study involving 45 phantoms. Results showed that the beam cross-sectional area oscillates around the ceramics radius and it was possible to automatically detect echo signals in phantoms with length higher than 80 mm. Hereupon, it is expected that the introduction of the proposed system on the PRA procedure, will allow to guide the surgeon through the optimal path towards the precise kidney target, increasing surgeon’s confidence and reducing complications (e.g. organ perforation) during PRA. Moreover, the developed framework has the potential to make the PRA free of radiation for both patient and surgeon and to broad the use of PRA to less specialized surgeons.Intervenções renais minimamente invasivas são realizadas diariamente para o tratamento e diagnóstico de várias doenças renais. O acesso renal percutâneo (ARP) é uma etapa essencial e desafiante na maior parte destes procedimentos. O seu resultado encontra-se diretamente relacionado com a capacidade do cirurgião visualizar e atingir com precisão o alvo anatómico. Hoje em dia, o ARP é sempre guiado com recurso a sistemas imagiológicos, na maior parte das vezes baseados em raios-X (p.e. a fluoroscopia). A radiação destes sistemas nas salas cirúrgicas representa um grande risco para a equipa médica, aonde a sua remoção levará a um impacto direto na diminuição da dose exposta aos pacientes e cirurgiões. De modo a resolver os problemas existentes, esta tese tem como objetivo o desenvolvimento de uma framework de hardware/software que permita, de forma intuitiva e segura, guiar o cirurgião durante o planeamento e punção do ARP. Em termos de planeamento, foi desenvolvido um conjunto de metodologias de modo a aumentar a eficácia com que o alvo anatómico é alcançado. As estruturas abdominais mais relevantes para o procedimento de ARP, foram automaticamente agrupadas em volumes 3D, através de um problema de optimização global com base no princípio de “minimum description length” e propriedades estatísticas da imagem. Por fim, um procedimento de Ray Cast, com múltiplas funções de transferência, foi utilizado para enfatizar as estruturas segmentadas. Os resultados mostram que é possível detetar todas as estruturas abdominais envolventes ao rim, com a capacidade para estimar corretamente uma trajetória virtual. No que diz respeito à fase de punção percutânea, foram testadas duas soluções de deteção de movimento (ótica e eletromagnética) em múltiplos ensaios in vitro, in vivo e ex vivo. A solução baseada em sensores óticos ajudou no cálculo do melhor ponto de punção e na definição da melhor trajetória a seguir. Contudo, este sistema necessita de uma linha de visão com diferentes marcadores óticos acoplados à base da agulha, limitando a precisão com que a agulha é detetada no interior do corpo humano. Os resultados indicam que a agulha pode sofrer deflexões à medida que vai sendo inserida, com erros superiores a 3 mm. Por outro lado, foi desenvolvida e testada uma solução com base em sensores eletromagnéticos. Para tal, um cateter que integra um sensor de posição e orientação na sua ponta, foi colocado por via trans-uretral junto do alvo renal. De seguida, uma agulha, integrando um sensor semelhante, é utilizada para a punção percutânea. A partir da diferença espacial de ambos os sensores, é possível gerar uma trajetória de punção virtual. A mediana do tempo necessário para puncionar o rim e ureter, segundo esta trajetória, foi de 19 e 51 segundos, respetivamente (variações de 14 a 45 e 45 a 67 segundos). Estes resultados representam uma melhoria do tempo de punção entre 75% e 85%, quando comparados com o estado da arte dos métodos atuais. Além do feedback visual, som 3D e feedback vibratório foram explorados de modo a fornecer informações complementares da posição da agulha. Verificou-se que com este tipo de feedback, o cirurgião tende a seguir uma trajetória de punção com desvios mínimos, sendo igualmente capaz de antecipar qualquer movimento, mesmo sem olhar para o monitor. Fontes de som e vibração podem ser corretamente detetadas em 79,2 ± 8,1% e 91,1 ± 3,6%, com erros médios de angulação de 10.4º e 8.0 graus, respetivamente. Adicionalmente ao sistema de navegação, foram também produzidos três transdutores de ultrassom circulares com um canal de trabalho para a agulha. Para tal, foram exploradas diferentes configurações de fabricação em termos de materiais piezoelétricos, transdutores multi-array ou singulares e espessura/material de layers de suporte. Os sinais originados em cada transdutor foram filtrados e processados de modo a detetar de forma automática os ecos refletidos, e assim, alertar o cirurgião quando existem variações anatómicas ao longo do caminho de punção. Os transdutores foram mapeados num tanque de água e testados em 45 phantoms. Os resultados mostraram que o feixe de área em corte transversal oscila em torno do raio de cerâmica, e que os ecos refletidos são detetados em phantoms com comprimentos superiores a 80 mm. Desta forma, é expectável que a introdução deste novo sistema a nível do ARP permitirá conduzir o cirurgião ao longo do caminho de punção ideal, aumentado a confiança do cirurgião e reduzindo possíveis complicações (p.e. a perfuração dos órgãos). Além disso, de realçar que este sistema apresenta o potencial de tornar o ARP livre de radiação e alarga-lo a cirurgiões menos especializados.The present work was only possible thanks to the support by the Portuguese Science and Technology Foundation through the PhD grant with reference SFRH/BD/74276/2010 funded by FCT/MEC (PIDDAC) and by Fundo Europeu de Desenvolvimento Regional (FEDER), Programa COMPETE - Programa Operacional Factores de Competitividade (POFC) do QREN
    corecore