2,545 research outputs found

    Stochastic Spin-Orbit Torque Devices as Elements for Bayesian Inference

    Full text link
    Probabilistic inference from real-time input data is becoming increasingly popular and may be one of the potential pathways at enabling cognitive intelligence. As a matter of fact, preliminary research has revealed that stochastic functionalities also underlie the spiking behavior of neurons in cortical microcircuits of the human brain. In tune with such observations, neuromorphic and other unconventional computing platforms have recently started adopting the usage of computational units that generate outputs probabilistically, depending on the magnitude of the input stimulus. In this work, we experimentally demonstrate a spintronic device that offers a direct mapping to the functionality of such a controllable stochastic switching element. We show that the probabilistic switching of Ta/CoFeB/MgO heterostructures in presence of spin-orbit torque and thermal noise can be harnessed to enable probabilistic inference in a plethora of unconventional computing scenarios. This work can potentially pave the way for hardware that directly mimics the computational units of Bayesian inference

    Generalized Probabilistic Reasoning and Empirical Studies on Computational Efficiency and Scalability

    Get PDF
    Expert Systems are tools that can be very useful for diagnostic purposes, however current methods of storing and reasoning with knowledge have significant limitations. One set of limitations involves how to store and manipulate uncertain knowledge: much of the knowledge we are dealing with has some degree of uncertainty. These limitations include lack of complete information, not being able to model cyclic information and limitations on the size and complexity of the problems to be solved. If expert systems are ever going to be able to tackle significant real world problems then these deficiencies must be corrected. This paper describes a new method of reasoning with uncertain knowledge which improves the computational efficiency as well as scalability over current methods. The cornerstone of this method involves incorporating and exploiting information about the structure of the knowledge representation to reduce the problem size and complexity. Additionally, a new knowledge representation is discussed that will further increase the capability of expert systems to model a wider variety of real world problems. Finally, benchmarking studies of the new algorithm against the old have led to insights into the graph structure of very large knowledge bases

    BAYESIAN-INTEGRATED SYSTEM DYNAMICS MODELLING FOR PRODUCTION LINE RISK ASSESSMENT

    Get PDF
    Companies, across the globe are concerned with risks that impair their ability to produce quality products at a low cost and deliver them to customers on time. Risk assessment, comprising of both external and internal elements, prepares companies to identify and manage the risks affecting them. Although both external/supply chain and internal/production line risk assessments are necessary, internal risk assessment is often ignored. Internal risk assessment helps companies recognize vulnerable sections of production operations and provide opportunities for risk mitigation. In this research, a novel production line risk assessment methodology is proposed. Traditional simulation techniques fail to capture the complex relationship amongst risk events and the dynamic interaction between risks affecting a production line. Bayesian- integrated System Dynamics modelling can help resolve this limitation. Bayesian Belief Networks (BBN) effectively capture risk relationships and their likelihoods. Integrating BBN with System Dynamics (SD) for modelling production lines help capture the impact of risk events on a production line as well as the dynamic interaction between those risks and production line variables. The proposed methodology is applied to an industrial case study for validation and to discern research and practical implications

    Applications of Belief Functions in Business Decisions: A Review

    Get PDF
    This is the author's final draft. The publisher's official version is available from: .In this paper, we review recent applications of Dempster-Shafer theory (DST) of belief functions to auditing and business decision-making. We show how DST can better map uncertainties in the application domains than Bayesian theory of probabilities. We review the applications in auditing around three practical problems that challenge the effective application of DST, namely, hierarchical evidence, versatile evidence, and statistical evidence. We review the applications in other business decisions in two loose categories: judgment under ambiguity and business model combination. Finally, we show how the theory of linear belief functions, a new extension of DST, can provide an alternative solution to a wide range of business problems

    Uncertainty Assessment in High-Risk Environments Using Probability, Evidence Theory and Expert Judgment Elicitation

    Get PDF
    The level of uncertainty in advanced system design is assessed by comparing the results of expert judgment elicitation to probability and evidence theory. This research shows how one type of monotone measure, namely Dempster-Shafer Theory of Evidence can expand the framework of uncertainty to provide decision makers a more robust solution space. The issues imbedded in this research are focused on how the relevant predictive uncertainty produced by similar action is measured. This methodology uses the established approach from traditional probability theory and Dempster-Shafer evidence theory to combine two classes of uncertainty, aleatory and epistemic. Probability theory provides the mathematical structure traditionally used in the representation of aleatory uncertainty. The uncertainty in analysis outcomes is represented by probability distributions and typically summarized as Complimentary Cumulative Distribution Functions (CCDFs). The main components of this research are probability of X in the probability theory compared to mx in evidence theory. Using this comparison, an epistemic model is developed to obtain the upper “CCPF - Complimentary Cumulative Plausibility Function” limits and the lower “CCBF - Complimentary Cumulative Belief Function” limits compared to the traditional probability function. A conceptual design for the Thermal Protection System (TPS) of future Crew Exploration Vehicles (CEV) is used as an initial test case. A questionnaire is tailored to elicit judgment from experts in high-risk environments. Based on description and characteristics, the answers of the questionnaire produces information, that serves as qualitative semantics used for the evidence theory functions. The computational mechanism provides a heuristic approach for the compilation and presentation of the results. A follow-up evaluation serves as validation of the findings and provides useful information in terms of consistency and adoptability to other domains. The results of this methodology provide a useful and practical approach in conceptual design to aid the decision maker in assessing the level of uncertainty of the experts. The methodology presented is well-suited for decision makers that encompass similar conceptual design instruments

    ISIPTA'07: Proceedings of the Fifth International Symposium on Imprecise Probability: Theories and Applications

    Get PDF
    B

    Data Obsolescence Detection in the Light of Newly Acquired Valid Observations

    Full text link
    The information describing the conditions of a system or a person is constantly evolving and may become obsolete and contradict other information. A database, therefore, must be consistently updated upon the acquisition of new valid observations that contradict obsolete ones contained in the database. In this paper, we propose a novel approach for dealing with the information obsolescence problem. Our approach aims to detect, in real-time, contradictions between observations and then identify the obsolete ones, given a representation model. Since we work within an uncertain environment characterized by the lack of information, we choose to use a Bayesian network as our representation model and propose a new approximate concept, ϵ\epsilon-Contradiction. The new concept is parameterised by a confidence level of having a contradiction in a set of observations. We propose a polynomial-time algorithm for detecting obsolete information. We show that the resulting obsolete information is better represented by an AND-OR tree than a simple set of observations. Finally, we demonstrate the effectiveness of our approach on a real elderly fall-prevention database and showcase how this tree can be used to give reliable recommendations to doctors. Our experiments give systematically and substantially very good results
    • …
    corecore