95,304 research outputs found

    A novel Big Data analytics and intelligent technique to predict driver's intent

    Get PDF
    Modern age offers a great potential for automatically predicting the driver's intent through the increasing miniaturization of computing technologies, rapid advancements in communication technologies and continuous connectivity of heterogeneous smart objects. Inside the cabin and engine of modern cars, dedicated computer systems need to possess the ability to exploit the wealth of information generated by heterogeneous data sources with different contextual and conceptual representations. Processing and utilizing this diverse and voluminous data, involves many challenges concerning the design of the computational technique used to perform this task. In this paper, we investigate the various data sources available in the car and the surrounding environment, which can be utilized as inputs in order to predict driver's intent and behavior. As part of investigating these potential data sources, we conducted experiments on e-calendars for a large number of employees, and have reviewed a number of available geo referencing systems. Through the results of a statistical analysis and by computing location recognition accuracy results, we explored in detail the potential utilization of calendar location data to detect the driver's intentions. In order to exploit the numerous diverse data inputs available in modern vehicles, we investigate the suitability of different Computational Intelligence (CI) techniques, and propose a novel fuzzy computational modelling methodology. Finally, we outline the impact of applying advanced CI and Big Data analytics techniques in modern vehicles on the driver and society in general, and discuss ethical and legal issues arising from the deployment of intelligent self-learning cars

    Data mining based cyber-attack detection

    Get PDF

    Modeling Big Medical Survival Data Using Decision Tree Analysis with Apache Spark

    Get PDF
    In many medical studies, an outcome of interest is not only whether an event occurred, but when an event occurred; and an example of this is Alzheimer’s disease (AD). Identifying patients with Mild Cognitive Impairment (MCI) who are likely to develop Alzheimer’s disease (AD) is highly important for AD treatment. Previous studies suggest that not all MCI patients will convert to AD. Massive amounts of data from longitudinal and extensive studies on thousands of Alzheimer’s patients have been generated. Building a computational model that can predict conversion form MCI to AD can be highly beneficial for early intervention and treatment planning for AD. This work presents a big data model that contains machine-learning techniques to determine the level of AD in a participant and predict the time of conversion to AD. The proposed framework considers one of the widely used screening assessment for detecting cognitive impairment called Montreal Cognitive Assessment (MoCA). MoCA data set was collected from different centers and integrated into our large data framework storage using a Hadoop Data File System (HDFS); the data was then analyzed using an Apache Spark framework. The accuracy of the proposed framework was compared with a semi-parametric Cox survival analysis model

    Learning Audio Sequence Representations for Acoustic Event Classification

    Full text link
    Acoustic Event Classification (AEC) has become a significant task for machines to perceive the surrounding auditory scene. However, extracting effective representations that capture the underlying characteristics of the acoustic events is still challenging. Previous methods mainly focused on designing the audio features in a 'hand-crafted' manner. Interestingly, data-learnt features have been recently reported to show better performance. Up to now, these were only considered on the frame-level. In this paper, we propose an unsupervised learning framework to learn a vector representation of an audio sequence for AEC. This framework consists of a Recurrent Neural Network (RNN) encoder and a RNN decoder, which respectively transforms the variable-length audio sequence into a fixed-length vector and reconstructs the input sequence on the generated vector. After training the encoder-decoder, we feed the audio sequences to the encoder and then take the learnt vectors as the audio sequence representations. Compared with previous methods, the proposed method can not only deal with the problem of arbitrary-lengths of audio streams, but also learn the salient information of the sequence. Extensive evaluation on a large-size acoustic event database is performed, and the empirical results demonstrate that the learnt audio sequence representation yields a significant performance improvement by a large margin compared with other state-of-the-art hand-crafted sequence features for AEC

    A hybrid supervised/unsupervised machine learning approach to solar flare prediction

    Get PDF
    We introduce a hybrid approach to solar flare prediction, whereby a supervised regularization method is used to realize feature importance and an unsupervised clustering method is used to realize the binary flare/no-flare decision. The approach is validated against NOAA SWPC data

    Predicting customer's gender and age depending on mobile phone data

    Full text link
    In the age of data driven solution, the customer demographic attributes, such as gender and age, play a core role that may enable companies to enhance the offers of their services and target the right customer in the right time and place. In the marketing campaign, the companies want to target the real user of the GSM (global system for mobile communications), not the line owner. Where sometimes they may not be the same. This work proposes a method that predicts users' gender and age based on their behavior, services and contract information. We used call detail records (CDRs), customer relationship management (CRM) and billing information as a data source to analyze telecom customer behavior, and applied different types of machine learning algorithms to provide marketing campaigns with more accurate information about customer demographic attributes. This model is built using reliable data set of 18,000 users provided by SyriaTel Telecom Company, for training and testing. The model applied by using big data technology and achieved 85.6% accuracy in terms of user gender prediction and 65.5% of user age prediction. The main contribution of this work is the improvement in the accuracy in terms of user gender prediction and user age prediction based on mobile phone data and end-to-end solution that approaches customer data from multiple aspects in the telecom domain
    corecore