104,854 research outputs found

    Distributed expertise: Qualitative study of a British network of multidisciplinary teams supporting parents of children with chronic kidney disease

    Get PDF
    © 2014 The Authors. Background: Long-term childhood conditions are often managed by hospital-based multidisciplinary teams (MDTs) of professionals with discipline specific expertise of a condition, in partnership with parents. However, little evidence exists on professional-parent interactions in this context. An exploration of professionals' accounts of the way they individually and collectively teach parents to manage their child's clinical care at home is, therefore, important for meeting parents' needs, informing policy and educating novice professionals. Using chronic kidney disease as an exemplar this paper reports on one aspect of a study of interactions between professionals and parents in a network of 12 children's kidney units in Britain. Methods: We conducted semi-structured, qualitative interviews with a convenience sample of 112 professionals (clinical-psychologists, dietitians, doctors, nurses, pharmacists, play-workers, therapists and social workers), exploring accounts of their parent-educative activity. We analysed data using framework and the concept of distributed expertise. Results: Four themes emerged that related to the way expertise was distributed within and across teams: (i) recognizing each other's' expertise, (ii) sharing expertise within the MDT, (iii) language interpretation, and (iv) acting as brokers. Two different professional identifications were also seen to co-exist within MDTs, with participants using the term 'we' both as the intra-professional 'we' (relating to the professional identity) when describing expertise within a disciplinary group (for example: 'As dietitians we aim to give tailored advice to optimize children's growth'), and the inter-professional 'we' (a 'team-identification'), when discussing expertise within the team (for example: 'We work as a team and make sure we're all happy with every aspect of their training before they go home'). Conclusions: This study highlights the dual identifications implicit in 'being professional' in this context (to the team and to one's profession) as well as the unique role that each member of a team contributes to children's care. Our methodology and results have the potential to be transferred to teams managing other conditions

    Data as a Service (DaaS) for sharing and processing of large data collections in the cloud

    Get PDF
    Data as a Service (DaaS) is among the latest kind of services being investigated in the Cloud computing community. The main aim of DaaS is to overcome limitations of state-of-the-art approaches in data technologies, according to which data is stored and accessed from repositories whose location is known and is relevant for sharing and processing. Besides limitations for the data sharing, current approaches also do not achieve to fully separate/decouple software services from data and thus impose limitations in inter-operability. In this paper we propose a DaaS approach for intelligent sharing and processing of large data collections with the aim of abstracting the data location (by making it relevant to the needs of sharing and accessing) and to fully decouple the data and its processing. The aim of our approach is to build a Cloud computing platform, offering DaaS to support large communities of users that need to share, access, and process the data for collectively building knowledge from data. We exemplify the approach from large data collections from health and biology domains.Peer ReviewedPostprint (author's final draft

    Designing Traceability into Big Data Systems

    Full text link
    Providing an appropriate level of accessibility and traceability to data or process elements (so-called Items) in large volumes of data, often Cloud-resident, is an essential requirement in the Big Data era. Enterprise-wide data systems need to be designed from the outset to support usage of such Items across the spectrum of business use rather than from any specific application view. The design philosophy advocated in this paper is to drive the design process using a so-called description-driven approach which enriches models with meta-data and description and focuses the design process on Item re-use, thereby promoting traceability. Details are given of the description-driven design of big data systems at CERN, in health informatics and in business process management. Evidence is presented that the approach leads to design simplicity and consequent ease of management thanks to loose typing and the adoption of a unified approach to Item management and usage.Comment: 10 pages; 6 figures in Proceedings of the 5th Annual International Conference on ICT: Big Data, Cloud and Security (ICT-BDCS 2015), Singapore July 2015. arXiv admin note: text overlap with arXiv:1402.5764, arXiv:1402.575

    A network approach for managing and processing big cancer data in clouds

    Get PDF
    Translational cancer research requires integrative analysis of multiple levels of big cancer data to identify and treat cancer. In order to address the issues that data is decentralised, growing and continually being updated, and the content living or archiving on different information sources partially overlaps creating redundancies as well as contradictions and inconsistencies, we develop a data network model and technology for constructing and managing big cancer data. To support our data network approach for data process and analysis, we employ a semantic content network approach and adopt the CELAR cloud platform. The prototype implementation shows that the CELAR cloud can satisfy the on-demanding needs of various data resources for management and process of big cancer data

    Searching Data: A Review of Observational Data Retrieval Practices in Selected Disciplines

    Get PDF
    A cross-disciplinary examination of the user behaviours involved in seeking and evaluating data is surprisingly absent from the research data discussion. This review explores the data retrieval literature to identify commonalities in how users search for and evaluate observational research data. Two analytical frameworks rooted in information retrieval and science technology studies are used to identify key similarities in practices as a first step toward developing a model describing data retrieval

    End-to-End QoS Support for a Medical Grid Service Infrastructure

    No full text
    Quality of Service support is an important prerequisite for the adoption of Grid technologies for medical applications. The GEMSS Grid infrastructure addressed this issue by offering end-to-end QoS in the form of explicit timeliness guarantees for compute-intensive medical simulation services. Within GEMSS, parallel applications installed on clusters or other HPC hardware may be exposed as QoS-aware Grid services for which clients may dynamically negotiate QoS constraints with respect to response time and price using Service Level Agreements. The GEMSS infrastructure and middleware is based on standard Web services technology and relies on a reservation based approach to QoS coupled with application specific performance models. In this paper we present an overview of the GEMSS infrastructure, describe the available QoS and security mechanisms, and demonstrate the effectiveness of our methods with a Grid-enabled medical imaging service

    On-Demand Big Data Integration: A Hybrid ETL Approach for Reproducible Scientific Research

    Full text link
    Scientific research requires access, analysis, and sharing of data that is distributed across various heterogeneous data sources at the scale of the Internet. An eager ETL process constructs an integrated data repository as its first step, integrating and loading data in its entirety from the data sources. The bootstrapping of this process is not efficient for scientific research that requires access to data from very large and typically numerous distributed data sources. a lazy ETL process loads only the metadata, but still eagerly. Lazy ETL is faster in bootstrapping. However, queries on the integrated data repository of eager ETL perform faster, due to the availability of the entire data beforehand. In this paper, we propose a novel ETL approach for scientific data integration, as a hybrid of eager and lazy ETL approaches, and applied both to data as well as metadata. This way, Hybrid ETL supports incremental integration and loading of metadata and data from the data sources. We incorporate a human-in-the-loop approach, to enhance the hybrid ETL, with selective data integration driven by the user queries and sharing of integrated data between users. We implement our hybrid ETL approach in a prototype platform, Obidos, and evaluate it in the context of data sharing for medical research. Obidos outperforms both the eager ETL and lazy ETL approaches, for scientific research data integration and sharing, through its selective loading of data and metadata, while storing the integrated data in a scalable integrated data repository.Comment: Pre-print Submitted to the DMAH Special Issue of the Springer DAPD Journa

    Medical data processing and analysis for remote health and activities monitoring

    Get PDF
    Recent developments in sensor technology, wearable computing, Internet of Things (IoT), and wireless communication have given rise to research in ubiquitous healthcare and remote monitoring of human\u2019s health and activities. Health monitoring systems involve processing and analysis of data retrieved from smartphones, smart watches, smart bracelets, as well as various sensors and wearable devices. Such systems enable continuous monitoring of patients psychological and health conditions by sensing and transmitting measurements such as heart rate, electrocardiogram, body temperature, respiratory rate, chest sounds, or blood pressure. Pervasive healthcare, as a relevant application domain in this context, aims at revolutionizing the delivery of medical services through a medical assistive environment and facilitates the independent living of patients. In this chapter, we discuss (1) data collection, fusion, ownership and privacy issues; (2) models, technologies and solutions for medical data processing and analysis; (3) big medical data analytics for remote health monitoring; (4) research challenges and opportunities in medical data analytics; (5) examples of case studies and practical solutions
    • 

    corecore