36,350 research outputs found

    Solar-thermal and hybrid photovoltaic-thermal systems for renewable heating

    Get PDF
    Grantham Briefing Papers analyse climate change and environmental research linked to work at Imperial College London, setting it in the context of national and international policy and the future research agenda. This paper and other Grantham publications are available from: www.imperial.ac.uk/grantham/publicationsThis paper looks at the barriers and opportunities for the mass deployment of solar-thermal technologies and offers a vision for the future of solar-thermal systems. HEADLINES: -Heat constitutes about half of total global energy demand. Solar heat offers key advantages over other renewable sources for meeting this demand through distributed, integrated systems. -Solar heat is a mature sustainable energy technology capable of mass deployment. There is significant scope for increasing the installed solar heat capacity in Europe. -Only a few European countries are close to reaching the EU target of 1 m2 of solar-thermal installations per person. -One key challenge for the further development of the solar-thermal market arises from issues related to the intermittency of the solar resource, and the requirement for storage and/or backup systems. The former increases investment costs and limits adaptability. -An analysis of EU countries with good market development, suggests that obligation schemes are the best policy option for maximising installations. These do not present a direct cost to the public budget, and determine the growth of the local industry in the long term. -Solar-thermal collectors can be combined with photovoltaic (PV) modules to produce hybrid PV-thermal (PV-T) collectors. These can deliver both heat and electricity simultaneously from the same installed area and at a higher overall efficiency compared to individual solar-thermal and PV panels installed separately. --Hybrid PV-T technology provides a particularly promising solution when roof space is limited or when heat and electricity are required at the same time.Preprin

    Renewable energy for Latium: looking for innovative technologies in PV and solar thermal field.

    Get PDF
    European METTTES Project, financed within the FP6-2005-INNOV-7 call, aimed to test a new methodology to encourage the launch of transnational collaborations technology based among European small and medium enterprises (SMEs) and/or research organizations, focusing its attention on regional technology demand, influenced by changes in regulations and standards and fostered by local incentives. METTTES considered European directives, national, regional and local measures (i.e. incentives, projects, etc.) potentially influencing companies’ behavior. In addition, METTTES has also taken into account the IPPC (Integrated Pollution Prevention and Control) Directive 96/61/EC, whose purpose is to achieve an integrated pollution prevention and control from the industrial activities. At the end of these analysis, METTTES derived the technology demand not from the needs of individual enterprises, but instead from the regional system. A certain number of Regional Demand Profiles (RDPs) on particular interesting industrial fields have been collected at European level; the documentation includes a comprehensive analysis and detailed presentation of current regional technology demands and forecasts as well as foresight regarding future demands triggered by legal requirements new administrative regulations or national environmental policy and BATs analysis. Each RDP document has been edited with the collaboration of local stakeholders and administrations and by auditing involving SMEs. Results of each RDP have been high quality Technology Requests (TRs) expressed by local companies which seek technological collaboration. For Latium Region this task has been performed by CNR in the sector of PV and solar thermal technologies

    Transforming the energy system - the evolution of the German technological system for solar cells

    Get PDF
    To improve our understanding of processes involved in the formation and growth of new technological systems in the energy sector and to identify the associated key challenges for policy makers managing the transformation process, we examine the development of the German technological system for solar cells over the past twenty-five years. We use a 'technological system' approach in which we will trace the evolution of actors, networks and institutions that have a bearing on the generation and diffusion of solar cells. An initial preparatory stage lasted until about 1989 and was mainly characterised by knowledge build up induced by a Federal RDD programme. This was followed by a second stage characterised by political struggle over the regulatory framework and subsequently the beginning of a virtuous circle for solar cells. In the concluding discussion, we emphasise four key features of the evolution of the technological system: (1) the role of a coalition of system builders which successfully influenced the regulatory framework so that markets could be formed: (2) the considerable length of the learning period and the large number of actors which need to learn; (3) the importance of policies which form early markets (not only early niche markets, but beyond those) as only markets may induce firms to enter and learn, and (4) the need to run market formation policies simultaneous to policies which maintain technological variety.new technology, growth and formation, solar cells, Germany

    Review and Comparison of Intelligent Optimization Modelling Techniques for Energy Forecasting and Condition-Based Maintenance in PV Plants

    Get PDF
    Within the field of soft computing, intelligent optimization modelling techniques include various major techniques in artificial intelligence. These techniques pretend to generate new business knowledge transforming sets of "raw data" into business value. One of the principal applications of these techniques is related to the design of predictive analytics for the improvement of advanced CBM (condition-based maintenance) strategies and energy production forecasting. These advanced techniques can be used to transform control system data, operational data and maintenance event data to failure diagnostic and prognostic knowledge and, ultimately, to derive expected energy generation. One of the systems where these techniques can be applied with massive potential impact are the legacy monitoring systems existing in solar PV energy generation plants. These systems produce a great amount of data over time, while at the same time they demand an important e ort in order to increase their performance through the use of more accurate predictive analytics to reduce production losses having a direct impact on ROI. How to choose the most suitable techniques to apply is one of the problems to address. This paper presents a review and a comparative analysis of six intelligent optimization modelling techniques, which have been applied on a PV plant case study, using the energy production forecast as the decision variable. The methodology proposed not only pretends to elicit the most accurate solution but also validates the results, in comparison with the di erent outputs for the di erent techniques

    The feed-in tariff in the UK : a case study focus on domestic photovoltaic systems

    Get PDF
    This paper explores the photovoltaic (PV) industry in the United Kingdom (UK) as experienced by those who are working with it directly and with consideration of current standards, module efficiencies and future environmental trends. The government's consultation on the comprehensive review for solar PV tariffs, proposes a reduction of the generation tariff for PV installations in the UK of more than 50%. The introduction of the Feed-In Tariffs scheme (FITs) has rapidly increased deployment of PV technologies at small scale since its introduction in April 2010. The central principle of FIT policies is to offer guaranteed prices for fixed periods to enable greater number of investors. A financial analysis was performed on two real-life installations in Cornwall, UK to determine the impact of proposed cuts to the FIT will make to a typical domestic PV system under 4 kW. The results show that a healthy Return on Investment (ROI) can still be made but that future installations should focus on off-setting electricity required from the national grid as a long term push for true sustainability rather than subsidised schemes. The profitability of future installations will have to be featured within in-service and end-of-service considerations such as the feed-in tariff, module efficiencies and the implications of costs associated with end-of-life disposal

    Simulation of nanostructure-based high-efficiency solar cells: challenges, existing approaches and future directions

    Full text link
    Many advanced concepts for high-efficiency photovoltaic devices exploit the peculiar optoelectronic properties of semiconductor nanostructures such as quantum wells, wires and dots. While the optics of such devices is only modestly affected due to the small size of the structures, the optical transitions and electronic transport can strongly deviate from the simple bulk picture known from conventional solar cell devices. This review article discusses the challenges for an adequate theoretical description of the photovoltaic device operation arising from the introduction of nanostructure absorber and/or conductor components and gives an overview of existing device simulation approaches.Comment: Invited paper, accepted for publication in IEEE Journal of Selected Topics in Quantum Electronic

    An Integrated Multi-Time-Scale Modeling for Solar Irradiance Forecasting Using Deep Learning

    Full text link
    For short-term solar irradiance forecasting, the traditional point forecasting methods are rendered less useful due to the non-stationary characteristic of solar power. The amount of operating reserves required to maintain reliable operation of the electric grid rises due to the variability of solar energy. The higher the uncertainty in the generation, the greater the operating-reserve requirements, which translates to an increased cost of operation. In this research work, we propose a unified architecture for multi-time-scale predictions for intra-day solar irradiance forecasting using recurrent neural networks (RNN) and long-short-term memory networks (LSTMs). This paper also lays out a framework for extending this modeling approach to intra-hour forecasting horizons thus, making it a multi-time-horizon forecasting approach, capable of predicting intra-hour as well as intra-day solar irradiance. We develop an end-to-end pipeline to effectuate the proposed architecture. The performance of the prediction model is tested and validated by the methodical implementation. The robustness of the approach is demonstrated with case studies conducted for geographically scattered sites across the United States. The predictions demonstrate that our proposed unified architecture-based approach is effective for multi-time-scale solar forecasts and achieves a lower root-mean-square prediction error when benchmarked against the best-performing methods documented in the literature that use separate models for each time-scale during the day. Our proposed method results in a 71.5% reduction in the mean RMSE averaged across all the test sites compared to the ML-based best-performing method reported in the literature. Additionally, the proposed method enables multi-time-horizon forecasts with real-time inputs, which have a significant potential for practical industry applications in the evolving grid.Comment: 19 pages, 12 figures, 3 tables, under review for journal submissio

    Theory and simulation of quantum photovoltaic devices based on the non-equilibrium Green's function formalism

    Get PDF
    This article reviews the application of the non-equilibrium Green's function formalism to the simulation of novel photovoltaic devices utilizing quantum confinement effects in low dimensional absorber structures. It covers well-known aspects of the fundamental NEGF theory for a system of interacting electrons, photons and phonons with relevance for the simulation of optoelectronic devices and introduces at the same time new approaches to the theoretical description of the elementary processes of photovoltaic device operation, such as photogeneration via coherent excitonic absorption, phonon-mediated indirect optical transitions or non-radiative recombination via defect states. While the description of the theoretical framework is kept as general as possible, two specific prototypical quantum photovoltaic devices, a single quantum well photodiode and a silicon-oxide based superlattice absorber, are used to illustrated the kind of unique insight that numerical simulations based on the theory are able to provide.Comment: 20 pages, 10 figures; invited review pape
    • …
    corecore