125,565 research outputs found

    A roadmap toward the automatic composition of systematic literature reviews

    Get PDF
    Objective.  This paper presents an overview of existing artificial intelligence tools to produce systematic literature reviews. Furthermore, we propose a general framework resulting from combining these techniques to highlight the challenges and possibilities currently existing in this research area. Design/Methodology/Approach. We undertook a scoping review on the systematic literature review steps to automate them via computational techniques. Results/Discussion. The process of creating a literature review is both creative and technical. The technical part of this process is liable to automation. Based on the literature, we chose to divide this technical part into four steps: searching, screening, extraction, and synthesis. For each one of these steps, we presented practical artificial intelligence techniques to carry them out. In addition, we presented the obstacles encountered in the application of each technique. Conclusion. We proposed a framework for automatically creating systematic literature reviews by combining and placing existing techniques in stages where they possess the greatest potential to be useful. Despite still lacking practical assessment in different areas of knowledge, this proposal indicates ways with the potential to reduce the time-consuming and repetitive work embedded in the systematic literature review process. Originality/Value. The paper presents the current possibilities for automating systematic literature reviews and how they can work together to reduce researchers’ operational workload

    Searching by learning: Exploring artificial general intelligence on small board games by deep reinforcement learning

    Get PDF
    In deep reinforcement learning, searching and learning techniques are two important components. They can be used independently and in combination to deal with different problems in AI. These results have inspired research into artificial general intelligence (AGI).We study table based classic Q-learning on the General Game Playing (GGP) system, showing that classic Q-learning works on GGP, although convergence is slow, and it is computationally expensive to learn complex games.This dissertation uses an AlphaZero-like self-play framework to explore AGI on small games. By tuning different hyper-parameters, the role, effects and contributions of searching and learning are studied. A further experiment shows that search techniques can contribute as experts to generate better training examples to speed up the start phase of training.In order to extend the AlphaZero-likeself-play approach to single player complex games, the Morpion Solitaire game is implemented by combining Ranked Reward method. Our first AlphaZero-based approach is able to achieve a near human best record.Overall, in this thesis, both searching and learning techniques are studied (by themselves and in combination) in GGP and AlphaZero-like self-play systems. We do so for the purpose of making steps towards artificial general intelligence, towards systems that exhibit intelligent behavior in more than one domain. China Scholarship CouncilAlgorithms and the Foundations of Software technolog

    Enhancing Undergraduate AI Courses through Machine Learning Projects

    Full text link
    It is generally recognized that an undergraduate introductory Artificial Intelligence course is challenging to teach. This is, in part, due to the diverse and seemingly disconnected core topics that are typically covered. The paper presents work funded by the National Science Foundation to address this problem and to enhance the student learning experience in the course. Our work involves the development of an adaptable framework for the presentation of core AI topics through a unifying theme of machine learning. A suite of hands-on semester-long projects are developed, each involving the design and implementation of a learning system that enhances a commonly-deployed application. The projects use machine learning as a unifying theme to tie together the core AI topics. In this paper, we will first provide an overview of our model and the projects being developed and will then present in some detail our experiences with one of the projects – Web User Profiling which we have used in our AI class

    The SP theory of intelligence: benefits and applications

    Full text link
    This article describes existing and expected benefits of the "SP theory of intelligence", and some potential applications. The theory aims to simplify and integrate ideas across artificial intelligence, mainstream computing, and human perception and cognition, with information compression as a unifying theme. It combines conceptual simplicity with descriptive and explanatory power across several areas of computing and cognition. In the "SP machine" -- an expression of the SP theory which is currently realized in the form of a computer model -- there is potential for an overall simplification of computing systems, including software. The SP theory promises deeper insights and better solutions in several areas of application including, most notably, unsupervised learning, natural language processing, autonomous robots, computer vision, intelligent databases, software engineering, information compression, medical diagnosis and big data. There is also potential in areas such as the semantic web, bioinformatics, structuring of documents, the detection of computer viruses, data fusion, new kinds of computer, and the development of scientific theories. The theory promises seamless integration of structures and functions within and between different areas of application. The potential value, worldwide, of these benefits and applications is at least $190 billion each year. Further development would be facilitated by the creation of a high-parallel, open-source version of the SP machine, available to researchers everywhere.Comment: arXiv admin note: substantial text overlap with arXiv:1212.022
    • …
    corecore