4,455 research outputs found

    A framework for robot learning during child-robot interaction with human engagement as reward signal

    Get PDF
    International audienceUsing robots as therapeutic or educational tools for children with autism requires robots to be able to adapt their behavior specifically for each child with whom they interact. In particular, some children may like to be looked into the eyes by the robot while some may not. Some may like a robot with an extroverted behavior while others may prefer a more introverted behavior. Here we present an algorithm to adapt the robot's expressivity parameters of action (mutual gaze duration, hand movement expressivity) in an online manner during the interaction. The reward signal used for learning is based on an estimation of the child's mutual engagement with the robot, measured through non-verbal cues such as the child's gaze and distance from the robot. We first present a pilot joint attention task where children with autism interact with a robot whose level of expressivity is predetermined to progressively increase, and show results suggesting the need for online adaptation of expressivity. We then present the proposed learning algorithm and some promising simulations in the same task. Altogether, these results suggest a way to enable robot learning based on non-verbal cues and to cope with the high degree of non-stationarities that can occur during interaction with children

    Interaction Histories and Short-Term Memory: Enactive Development of Turn-Taking Behaviours in a Childlike Humanoid Robot

    Get PDF
    In this article, an enactive architecture is described that allows a humanoid robot to learn to compose simple actions into turn-taking behaviours while playing interaction games with a human partner. The robot’s action choices are reinforced by social feedback from the human in the form of visual attention and measures of behavioural synchronisation. We demonstrate that the system can acquire and switch between behaviours learned through interaction based on social feedback from the human partner. The role of reinforcement based on a short-term memory of the interaction was experimentally investigated. Results indicate that feedback based only on the immediate experience was insufficient to learn longer, more complex turn-taking behaviours. Therefore, some history of the interaction must be considered in the acquisition of turn-taking, which can be efficiently handled through the use of short-term memory.Peer reviewedFinal Published versio

    Adaptive reinforcement learning with active state-specific exploration for engagement maximization during simulated child-robot interaction

    Get PDF
    International audienceUsing assistive robots for educational applications requires robots to be able to adapt their behavior specifically for each child with whom they interact. Among relevant signals, non-verbal cues such as the child's gaze can provide the robot with important information about the child's current engagement in the task, and whether the robot should continue its current behavior or not. Here we propose a reinforcement learning algorithm extended with active state-specific exploration and show its applicability to child engagement maximization as well as more classical tasks such as maze navigation. We first demonstrate its adaptive nature on a continuous maze problem as an enhancement of the classic grid world. There, parame-terized actions enable the agent to learn single moves until the end of a corridor, similarly to "options" but without explicit hierarchical representations. We then apply the algorithm to a series of simulated scenarios, such as an extended Tower of Hanoi where the robot should find the appropriate speed of movement for the interacting child, and to a pointing task where the robot should find the child-specific appropriate level of expressivity of action. We show that the algorithm enables to cope with both global and local non-stationarities in the state space while preserving a stable behavior in other stationary portions of the state space. Altogether, these results suggest a promising way to enable robot learning based on non-verbal cues and the high degree of non-stationarities that can occur during interaction with children

    Emotion and memory model for social robots: a reinforcement learning based behaviour selection

    Get PDF
    In this paper, we propose a reinforcement learning (RL) mechanism for social robots to select an action based on users’ learning performance and social engagement. We applied this behavior selection mechanism to extend the emotion and memory model, which allows a robot to create a memory account of the user’s emotional events and adapt its behavior based on the developed memory. We evaluated the model in a vocabulary-learning task at a school during a children’s game involving robot interaction to see if the model results in maintaining engagement and improving vocabulary learning across the four different interaction sessions. Generally, we observed positive findings based on child vocabulary learning and sustaining social engagement during all sessions. Compared to the trends of a previous study, we observed a higher level of social engagement across sessions in terms of the duration of the user gaze toward the robot. For vocabulary retention, we saw similar trends in general but also showing high vocabulary retention across some sessions. The findings indicate the benefits of applying RL techniques that have a reward system based on multi-modal user signals or cues

    Robot Fast Adaptation to Changes in Human Engagement During Simulated Dynamic Social Interaction With Active Exploration in Parameterized Reinforcement Learning

    Get PDF
    International audienceDynamic uncontrolled human-robot interactions (HRIs) require robots to be able to adapt to changes in the human's behavior and intentions. Among relevant signals, non-verbal cues such as the human's gaze can provide the robot with important information about the human's current engagement in the task, and whether the robot should continue its current behavior or not. However, robot reinforcement learning (RL) abilities to adapt to these nonverbal cues are still underdeveloped. Here, we propose an active exploration algorithm for RL during HRI where the reward function is the weighted sum of the human's current engagement and variations of this engagement. We use a parameterized action space where a meta-learning algorithm is applied to simultaneously tune the exploration in discrete action space (e.g., moving an object) and in the space of continuous characteristics of movement (e.g., velocity, direction, strength, and expressivity). We first show that this algorithm reaches state-of-the-art performance in the nonstationary multiarmed bandit paradigm. We then apply it to a simulated HRI task, and show that it outper-forms continuous parameterized RL with either passive or active exploration based on different existing methods. We finally test the performance in a more realistic test of the same HRI task, where a practical approach is followed to estimate human engagement through visual cues of the head pose. The algorithm can detect and adapt to perturbations in human engagement with different durations. Altogether, these results suggest a novel efficient and robust framework for robot learning during dynamic HRI scenarios

    Reinforcement Learning Approaches in Social Robotics

    Full text link
    This article surveys reinforcement learning approaches in social robotics. Reinforcement learning is a framework for decision-making problems in which an agent interacts through trial-and-error with its environment to discover an optimal behavior. Since interaction is a key component in both reinforcement learning and social robotics, it can be a well-suited approach for real-world interactions with physically embodied social robots. The scope of the paper is focused particularly on studies that include social physical robots and real-world human-robot interactions with users. We present a thorough analysis of reinforcement learning approaches in social robotics. In addition to a survey, we categorize existent reinforcement learning approaches based on the used method and the design of the reward mechanisms. Moreover, since communication capability is a prominent feature of social robots, we discuss and group the papers based on the communication medium used for reward formulation. Considering the importance of designing the reward function, we also provide a categorization of the papers based on the nature of the reward. This categorization includes three major themes: interactive reinforcement learning, intrinsically motivated methods, and task performance-driven methods. The benefits and challenges of reinforcement learning in social robotics, evaluation methods of the papers regarding whether or not they use subjective and algorithmic measures, a discussion in the view of real-world reinforcement learning challenges and proposed solutions, the points that remain to be explored, including the approaches that have thus far received less attention is also given in the paper. Thus, this paper aims to become a starting point for researchers interested in using and applying reinforcement learning methods in this particular research field
    corecore