200,169 research outputs found

    A framework for reasoning on component composition

    Get PDF
    The main characteristics of component models is their strict structure enabling better code reuse. Correctness of component compo- sition is well understood formally but existing works do not allow for mechanised reasoning on composition and component reconfigurations, whereas a mechanical support would improve the confidence in the ex- isting results. This article presents the formalisation in Isabelle/HOL of a component model, focusing on the structure and on basic lemmas to handle component structure. Our objective in this paper is to present the basic constructs, and the corresponding lemmas allowing the proof of properties related to structure of component models and the handling of structure at runtime. We illustrate the expressiveness of our approach by presenting component semantics, and properties on reconfiguration primitives

    DATESSO: Self-Adapting Service Composition with Debt-Aware Two Levels Constraint Reasoning

    Full text link
    The rapidly changing workload of service-based systems can easily cause under-/over-utilization on the component services, which can consequently affect the overall Quality of Service (QoS), such as latency. Self-adaptive services composition rectifies this problem, but poses several challenges: (i) the effectiveness of adaptation can deteriorate due to over-optimistic assumptions on the latency and utilization constraints, at both local and global levels; and (ii) the benefits brought by each composition plan is often short term and is not often designed for long-term benefits -- a natural prerequisite for sustaining the system. To tackle these issues, we propose a two levels constraint reasoning framework for sustainable self-adaptive services composition, called DATESSO. In particular, DATESSO consists of a re ned formulation that differentiates the "strictness" for latency/utilization constraints in two levels. To strive for long-term benefits, DATESSO leverages the concept of technical debt and time-series prediction to model the utility contribution of the component services in the composition. The approach embeds a debt-aware two level constraint reasoning algorithm in DATESSO to improve the efficiency, effectiveness and sustainability of self-adaptive service composition. We evaluate DATESSO on a service-based system with real-world WS-DREAM dataset and comparing it with other state-of-the-art approaches. The results demonstrate the superiority of DATESSO over the others on the utilization, latency and running time whilst likely to be more sustainable.Comment: Accepted to the SEAMS '20. Please use the following citation: Satish Kumar, Tao Chen, Rami Bahsoon, and Rajkumar Buyya. DATESSO: Self-Adapting Service Composition with Debt-Aware Two Levels Constraint Reasoning. In IEEE/ACM 15th International Symposium on Software Engineering for Adaptive and Self-Managing Systems, Oct 7-8, 2020, Seoul, Kore

    Designing Software Architectures As a Composition of Specializations of Knowledge Domains

    Get PDF
    This paper summarizes our experimental research and software development activities in designing robust, adaptable and reusable software architectures. Several years ago, based on our previous experiences in object-oriented software development, we made the following assumption: ‘A software architecture should be a composition of specializations of knowledge domains’. To verify this assumption we carried out three pilot projects. In addition to the application of some popular domain analysis techniques such as use cases, we identified the invariant compositional structures of the software architectures and the related knowledge domains. Knowledge domains define the boundaries of the adaptability and reusability capabilities of software systems. Next, knowledge domains were mapped to object-oriented concepts. We experienced that some aspects of knowledge could not be directly modeled in terms of object-oriented concepts. In this paper we describe our approach, the pilot projects, the experienced problems and the adopted solutions for realizing the software architectures. We conclude the paper with the lessons that we learned from this experience

    Source-to-source architecture transformation for performance optimization in BIP

    Get PDF
    BIP (Behavior, Interaction, Priorities) is a component framework for constructing systems from a set of atomic components by using two kinds of composition operators: interactions and priorities.In this paper we present a method that transforms the interactions of a component-based program in BIP and generates a functionally equivalent program.The method is based on the successive application of three types of source-to-source transformations: flattening of components, flattening of connectors and composition of atomic components.We show that the system of the transformations is confluent and terminates.By exhaustive application of the transformations, any BIP component can be transformed into an equivalent monolithic component.From this component, efficient C code can be generated.The method combines advantages of component-based description such as clarity, incremental construction and reasoning with the possibility to generate efficient monolithic code.It has been integrated in the design methodology for BIP and it has been successfully applied to two non trivial examples described in the paper.© 2009 IEEE

    Ontology-based modelling of architectural styles

    Get PDF
    The conceptual modelling of software architectures is of central importance for the quality of a software system. A rich modelling language is required to integrate the different aspects of architecture modelling, such as architectural styles, structural and behavioural modelling, into a coherent framework. Architectural styles are often neglected in software architectures. We propose an ontological approach for architectural style modelling based on description logic as an abstract, meta-level modelling instrument. We introduce a framework for style definition and style combination. The application of the ontological framework in the form of an integration into existing architectural description notations is illustrated

    Modal logics for reasoning about object-based component composition

    Get PDF
    Component-oriented development of software supports the adaptability and maintainability of large systems, in particular if requirements change over time and parts of a system have to be modified or replaced. The software architecture in such systems can be described by components and their composition. In order to describe larger architectures, the composition concept becomes crucial. We will present a formal framework for component composition for object-based software development. The deployment of modal logics for defining components and component composition will allow us to reason about and prove properties of components and compositions

    A conceptual architecture for semantic web services development and deployment

    Get PDF
    Several extensions of the Web Services Framework (WSF) have been proposed. The combination with Semantic Web technologies introduces a notion of semantics, which can enhance scalability through automation. Service composition to processes is an equally important issue. Ontology technology – the core of the Semantic Web – can be the central building block of an extension endeavour. We present a conceptual architecture for ontology-based Web service development and deployment. The development of service-based software systems within the WSF is gaining increasing importance. We show how ontologies can integrate models, languages, infrastructure, and activities within this architecture to support reuse and composition of semantic Web services

    Semantic model-driven development of web service architectures.

    Get PDF
    Building service-based architectures has become a major area of interest since the advent of Web services. Modelling these architectures is a central activity. Model-driven development is a recent approach to developing software systems based on the idea of making models the central artefacts for design representation, analysis, and code generation. We propose an ontology-based engineering methodology for semantic model-driven composition and transformation of Web service architectures. Ontology technology as a logic-based knowledge representation and reasoning framework can provide answers to the needs of sharable and reusable semantic models and descriptions needed for service engineering. Based on modelling, composition and code generation techniques for service architectures, our approach provides a methodological framework for ontology-based semantic service architecture

    Ontology technology for the development and deployment of learning technology systems - a survey

    Get PDF
    The World-Wide Web is undergoing dramatic changes at the moment. The Semantic Web is an initiative to bring meaning to the Web. The Semantic Web is based on ontology technology – a knowledge representation framework – at its core. We illustrate the importance of this evolutionary development. We survey five scenarios demonstrating different forms of applications of ontology technologies in the development and deployment of learning technology systems. Ontology technologies are highly useful to organise, personalise, and publish learning content and to discover, generate, and compose learning objects
    corecore