12,950 research outputs found

    A Data-driven Approach Towards Human-robot Collaborative Problem Solving in a Shared Space

    Full text link
    We are developing a system for human-robot communication that enables people to communicate with robots in a natural way and is focused on solving problems in a shared space. Our strategy for developing this system is fundamentally data-driven: we use data from multiple input sources and train key components with various machine learning techniques. We developed a web application that is collecting data on how two humans communicate to accomplish a task, as well as a mobile laboratory that is instrumented to collect data on how two humans communicate to accomplish a task in a physically shared space. The data from these systems will be used to train and fine-tune the second stage of our system, in which the robot will be simulated through software. A physical robot will be used in the final stage of our project. We describe these instruments, a test-suite and performance metrics designed to evaluate and automate the data gathering process as well as evaluate an initial data set.Comment: 2017 AAAI Fall Symposium on Natural Communication for Human-Robot Collaboratio

    Interactive Robot Learning of Gestures, Language and Affordances

    Full text link
    A growing field in robotics and Artificial Intelligence (AI) research is human-robot collaboration, whose target is to enable effective teamwork between humans and robots. However, in many situations human teams are still superior to human-robot teams, primarily because human teams can easily agree on a common goal with language, and the individual members observe each other effectively, leveraging their shared motor repertoire and sensorimotor resources. This paper shows that for cognitive robots it is possible, and indeed fruitful, to combine knowledge acquired from interacting with elements of the environment (affordance exploration) with the probabilistic observation of another agent's actions. We propose a model that unites (i) learning robot affordances and word descriptions with (ii) statistical recognition of human gestures with vision sensors. We discuss theoretical motivations, possible implementations, and we show initial results which highlight that, after having acquired knowledge of its surrounding environment, a humanoid robot can generalize this knowledge to the case when it observes another agent (human partner) performing the same motor actions previously executed during training.Comment: code available at https://github.com/gsaponaro/glu-gesture

    A real-time human-robot interaction system based on gestures for assistive scenarios

    Get PDF
    Natural and intuitive human interaction with robotic systems is a key point to develop robots assisting people in an easy and effective way. In this paper, a Human Robot Interaction (HRI) system able to recognize gestures usually employed in human non-verbal communication is introduced, and an in-depth study of its usability is performed. The system deals with dynamic gestures such as waving or nodding which are recognized using a Dynamic Time Warping approach based on gesture specific features computed from depth maps. A static gesture consisting in pointing at an object is also recognized. The pointed location is then estimated in order to detect candidate objects the user may refer to. When the pointed object is unclear for the robot, a disambiguation procedure by means of either a verbal or gestural dialogue is performed. This skill would lead to the robot picking an object in behalf of the user, which could present difficulties to do it by itself. The overall system — which is composed by a NAO and Wifibot robots, a KinectTM v2 sensor and two laptops — is firstly evaluated in a structured lab setup. Then, a broad set of user tests has been completed, which allows to assess correct performance in terms of recognition rates, easiness of use and response times.Postprint (author's final draft
    • …
    corecore