2,376 research outputs found

    Heterogeneous information integration for mountain augmented reality mobile apps

    Get PDF
    Mobile Augmented Reality (AR) applications offer a new way to promote the collection of geo-referenced information, by engaging citizens in a useful experience and encouraging them to gather environment data, such as images of plant species or of mountain snow coverage. The distinctive characteristic of mobile AR applications is the overlay of information directly on top of what the user sees, based on the user’s context estimated from the device sensors. The application analyzes the sensor readings (GPS position, phone orientation and motion, and possibly also the camera frame content), to understand what the user is watching and enriches the view with contextual information. Developing mobile AR applications poses several challenges related to the acquisition, selection, transmission and display of information, which gets more demanding in mountain applications where usage without Internet connectivity is a strong requirement. This paper discusses the experience of a real world mobile AR application for mountain exploration, which can be used to crowdsource the collection of mountain images for environmental purposes, such as the analysis of snow coverage for water availability prediction and the monitoring of plant diseases

    Convolutional neural network for pixel-wise skyline detection

    Get PDF
    Outdoor augmented reality applications are an emerging class of software systems that demand the fast identification of natural objects, such as plant species or mountain peaks, in low power mobile devices. Convolutional Neural Networks (CNN) have exhibited superior performance in a variety of computer vision tasks, but their training is a labor intensive task and their execution requires non negligible memory and CPU resources. This paper presents the results of training a CNN for the fast extraction of mountain skylines, which exhibits a good balance between accuracy (94,45% in best conditions and 86,87% in worst conditions), memory consumption (9,36 MB on average) and runtime execution overhead (273 ms on a Nexus 6 mobile phone), and thus has been exploited for implementing a real-world augmented reality applications for mountain peak recognition running on low to mid-end mobile phones

    Compressing web Geodata for real-time environmental applications

    Get PDF
    The advent of connected mobile devices has caused an unprecedented availability of geo-referenced user-generated content, which can be exploited for environment monitoring. In particular, Augmented Reality (AR) mobile applications can be designed to enable citizens collect observations, by overlaying relevant meta-data on their current view. This class of applications rely on multiple meta-data, which must be properly compressed for transmission and real-time usage. This paper presents a two-stage approach for the compression of Digital Elevation Model (DEM) data and geographic entities for a mountain environment monitoring mobile AR application. The proposed method is generic and could be applied to other types of geographical data

    A New Method of Improving the Azimuth in Mountainous Terrain by Skyline Matching

    Get PDF
    Augmented reality (AR) applications have a serious problem with the accuracy of the azimuth angle provided by mobile devices. The fusion of the digital magnetic compass (DMC), accelerometer and gyroscope gives the translation and rotation of the observer in 3D space. However, the precision is not always appropriate since DMC is prone to interference when using it near metal objects or electric currents. The silhouette of ridges separates the sky from the terrain and forms the skyline or horizon line in a mountainous scenery. This salient feature can be used for orientation. With the camera of the device and a digital elevation model (DEM) the correct azimuth angle could be determined. This study proposes an efective method to adjust the azimuth by identifying the skyline from an image and matches it with the skyline of the DEM. This approach does not require manual interaction. The algorithm has also been validated in a real-world environment

    Evaluating indoor positioning systems in a shopping mall : the lessons learned from the IPIN 2018 competition

    Get PDF
    The Indoor Positioning and Indoor Navigation (IPIN) conference holds an annual competition in which indoor localization systems from different research groups worldwide are evaluated empirically. The objective of this competition is to establish a systematic evaluation methodology with rigorous metrics both for real-time (on-site) and post-processing (off-site) situations, in a realistic environment unfamiliar to the prototype developers. For the IPIN 2018 conference, this competition was held on September 22nd, 2018, in Atlantis, a large shopping mall in Nantes (France). Four competition tracks (two on-site and two off-site) were designed. They consisted of several 1 km routes traversing several floors of the mall. Along these paths, 180 points were topographically surveyed with a 10 cm accuracy, to serve as ground truth landmarks, combining theodolite measurements, differential global navigation satellite system (GNSS) and 3D scanner systems. 34 teams effectively competed. The accuracy score corresponds to the third quartile (75th percentile) of an error metric that combines the horizontal positioning error and the floor detection. The best results for the on-site tracks showed an accuracy score of 11.70 m (Track 1) and 5.50 m (Track 2), while the best results for the off-site tracks showed an accuracy score of 0.90 m (Track 3) and 1.30 m (Track 4). These results showed that it is possible to obtain high accuracy indoor positioning solutions in large, realistic environments using wearable light-weight sensors without deploying any beacon. This paper describes the organization work of the tracks, analyzes the methodology used to quantify the results, reviews the lessons learned from the competition and discusses its future

    Outdoor Education and Mobile Learning: an Autobiographical Narrative Using Application-Based Information and Resources

    Get PDF
    Although mobile learning using smartphones and applications or apps have the potential to inform and educate individuals in an outdoor environment, users may find that connectivity issues and basic knowledge of outdoor environments, including both physical and emotional, could be limited by what this technology provided. This study provided my perspective as both participant and researcher on a journey over 150 miles on the Colorado Trail, using my iPhone as my primary tool for navigation and information for learning how to survive in an outdoor environment. From the beginning, the physical effects were difficult to overcome, but it was the psychological toll that became my greatest obstacle and the one element where mobile learning in the outdoor environment proved to have the greatest value. While this was one perspective, in a single study, by one participant, in which mobile learning in an outdoor environment took place, there were several themes that developed in regards to data connection, the use of fluid apps, the usefulness of static apps, and the restrictions of power in rural mountainous environments. These themes were emphasized to help future researchers further develop this information to help in the continued development of outdoor education using mobile learning

    Integrating passive ubiquitous surfaces into human-computer interaction

    Get PDF
    Mobile technologies enable people to interact with computers ubiquitously. This dissertation investigates how ordinary, ubiquitous surfaces can be integrated into human-computer interaction to extend the interaction space beyond the edge of the display. It turns out that acoustic and tactile features generated during an interaction can be combined to identify input events, the user, and the surface. In addition, it is shown that a heterogeneous distribution of different surfaces is particularly suitable for realizing versatile interaction modalities. However, privacy concerns must be considered when selecting sensors, and context can be crucial in determining whether and what interaction to perform.Mobile Technologien ermöglichen den Menschen eine allgegenwärtige Interaktion mit Computern. Diese Dissertation untersucht, wie gewöhnliche, allgegenwärtige Oberflächen in die Mensch-Computer-Interaktion integriert werden können, um den Interaktionsraum über den Rand des Displays hinaus zu erweitern. Es stellt sich heraus, dass akustische und taktile Merkmale, die während einer Interaktion erzeugt werden, kombiniert werden können, um Eingabeereignisse, den Benutzer und die Oberfläche zu identifizieren. Darüber hinaus wird gezeigt, dass eine heterogene Verteilung verschiedener Oberflächen besonders geeignet ist, um vielfältige Interaktionsmodalitäten zu realisieren. Bei der Auswahl der Sensoren müssen jedoch Datenschutzaspekte berücksichtigt werden, und der Kontext kann entscheidend dafür sein, ob und welche Interaktion durchgeführt werden soll
    • …
    corecore