51,298 research outputs found

    Context-adaptive learning designs by using semantic web services

    Get PDF
    IMS Learning Design (IMS-LD) is a promising technology aimed at supporting learning processes. IMS-LD packages contain the learning process metadata as well as the learning resources. However, the allocation of resources - whether data or services - within the learning design is done manually at design-time on the basis of the subjective appraisals of a learning designer. Since the actual learning context is known at runtime only, IMS-LD applications cannot adapt to a specific context or learner. Therefore, the reusability is limited and high development costs have to be taken into account to support a variety of contexts. To overcome these issues, we propose a highly dynamic approach based on Semantic Web Services (SWS) technology. Our aim is moving from the current data- and metadata-based to a context-adaptive service-orientated paradigm We introduce semantic descriptions of a learning process in terms of user objectives (learning goals) to abstract from any specific metadata standards and used learning resources. At runtime, learning goals are accomplished by automatically selecting and invoking the services that fit the actual user needs and process contexts. As a result, we obtain a dynamic adaptation to different contexts at runtime. Semantic mappings from our standard-independent process models will enable the automatic development of versatile, reusable IMS-LD applications as well as the reusability across multiple metadata standards. To illustrate our approach, we describe a prototype application based on our principles

    Semantic media decision taking using N3Logic

    Get PDF

    Application of semantic web technologies for automatic multimedia annotation

    Get PDF

    A schema-based P2P network to enable publish-subscribe for multimedia content in open hypermedia systems

    No full text
    Open Hypermedia Systems (OHS) aim to provide efficient dissemination, adaptation and integration of hyperlinked multimedia resources. Content available in Peer-to-Peer (P2P) networks could add significant value to OHS provided that challenges for efficient discovery and prompt delivery of rich and up-to-date content are successfully addressed. This paper proposes an architecture that enables the operation of OHS over a P2P overlay network of OHS servers based on semantic annotation of (a) peer OHS servers and of (b) multimedia resources that can be obtained through the link services of the OHS. The architecture provides efficient resource discovery. Semantic query-based subscriptions over this P2P network can enable access to up-to-date content, while caching at certain peers enables prompt delivery of multimedia content. Advanced query resolution techniques are employed to match different parts of subscription queries (subqueries). These subscriptions can be shared among different interested peers, thus increasing the efficiency of multimedia content dissemination

    Cloud service localisation

    Get PDF
    The essence of cloud computing is the provision of software and hardware services to a range of users in dierent locations. The aim of cloud service localisation is to facilitate the internationalisation and localisation of cloud services by allowing their adaption to dierent locales. We address the lingual localisation by providing service-level language translation techniques to adopt services to dierent languages and regulatory localisation by providing standards-based mappings to achieve regulatory compliance with regionally varying laws, standards and regulations. The aim is to support and enforce the explicit modelling of aspects particularly relevant to localisation and runtime support consisting of tools and middleware services to automating the deployment based on models of locales, driven by the two localisation dimensions. We focus here on an ontology-based conceptual information model that integrates locale specication in a coherent way

    Format-independent media delivery, applied to RTP, MP4, and Ogg

    Get PDF
    The current multimedia landscape is characterized by a significant heterogeneity in terms of coding and delivery formats, usage environments, and user preferences. This paper introduces a transparent multimedia content adaptation and delivery approach, i.e., model-driven content adaptation and delivery. It is based on a model that takes into account the structural metadata, semantic metadata, and scalability information of media bitstreams. Further, a format-independent multimedia packaging method is proposed based on this model for media bitstreams and MPEG-B BSDL. Thus, multimedia packaging is obtained by encapsulating the selected and adapted structural metadata within a specific delivery format. This packaging process is implemented using XML transformation filters and MPEG-B BSDL. To illustrate this format-independent packaging technique, we apply it to three packaging formats: RTP, MP4, and Ogg

    Towards robust and reliable multimedia analysis through semantic integration of services

    Get PDF
    Thanks to ubiquitous Web connectivity and portable multimedia devices, it has never been so easy to produce and distribute new multimedia resources such as videos, photos, and audio. This ever-increasing production leads to an information overload for consumers, which calls for efficient multimedia retrieval techniques. Multimedia resources can be efficiently retrieved using their metadata, but the multimedia analysis methods that can automatically generate this metadata are currently not reliable enough for highly diverse multimedia content. A reliable and automatic method for analyzing general multimedia content is needed. We introduce a domain-agnostic framework that annotates multimedia resources using currently available multimedia analysis methods. By using a three-step reasoning cycle, this framework can assess and improve the quality of multimedia analysis results, by consecutively (1) combining analysis results effectively, (2) predicting which results might need improvement, and (3) invoking compatible analysis methods to retrieve new results. By using semantic descriptions for the Web services that wrap the multimedia analysis methods, compatible services can be automatically selected. By using additional semantic reasoning on these semantic descriptions, the different services can be repurposed across different use cases. We evaluated this problem-agnostic framework in the context of video face detection, and showed that it is capable of providing the best analysis results regardless of the input video. The proposed methodology can serve as a basis to build a generic multimedia annotation platform, which returns reliable results for diverse multimedia analysis problems. This allows for better metadata generation, and improves the efficient retrieval of multimedia resources
    • 

    corecore