33,929 research outputs found

    A Generic Software Modeling Framework for Building Heterogeneous Distributed and Parallel Software Systems

    Get PDF
    Heterogeneous distributed and parallel computing environments are highly dependent on hardware and communication protocols. The result is significant difficulty in software reuse, portability across platforms, interoperability, and an increased overall development effort. A new systems engineering approach is needed for parallel processing systems in heterogeneous environments. The generic modeling framework de-emphasizes platform- specific development while exploiting software reuse (and platform-specific capabilities) with a simple, well defined, and easily integrated set of abstractions providing a high level of heterogeneous interoperability

    Pathways: Augmenting interoperability across scholarly repositories

    Full text link
    In the emerging eScience environment, repositories of papers, datasets, software, etc., should be the foundation of a global and natively-digital scholarly communications system. The current infrastructure falls far short of this goal. Cross-repository interoperability must be augmented to support the many workflows and value-chains involved in scholarly communication. This will not be achieved through the promotion of single repository architecture or content representation, but instead requires an interoperability framework to connect the many heterogeneous systems that will exist. We present a simple data model and service architecture that augments repository interoperability to enable scholarly value-chains to be implemented. We describe an experiment that demonstrates how the proposed infrastructure can be deployed to implement the workflow involved in the creation of an overlay journal over several different repository systems (Fedora, aDORe, DSpace and arXiv).Comment: 18 pages. Accepted for International Journal on Digital Libraries special issue on Digital Libraries and eScienc

    Pragmatic oriented data interoperability for smart healthcare information systems

    Get PDF
    Smart healthcare is a complex domain for systems integration due to human and technical factors and heterogeneous data sources involved. As a part of smart city, it is such a complex area where clinical functions require smartness of multi-systems collaborations for effective communications among departments, and radiology is one of the areas highly relies on intelligent information integration and communication. Therefore, it faces many challenges regarding integration and its interoperability such as information collision, heterogeneous data sources, policy obstacles, and procedure mismanagement. The purpose of this study is to conduct an analysis of data, semantic, and pragmatic interoperability of systems integration in radiology department, and to develop a pragmatic interoperability framework for guiding the integration. We select an on-going project at a local hospital for undertaking our case study. The project is to achieve data sharing and interoperability among Radiology Information Systems (RIS), Electronic Patient Record (EPR), and Picture Archiving and Communication Systems (PACS). Qualitative data collection and analysis methods are used. The data sources consisted of documentation including publications and internal working papers, one year of non-participant observations and 37 interviews with radiologists, clinicians, directors of IT services, referring clinicians, radiographers, receptionists and secretary. We identified four primary phases of data analysis process for the case study: requirements and barriers identification, integration approach, interoperability measurements, and knowledge foundations. Each phase is discussed and supported by qualitative data. Through the analysis we also develop a pragmatic interoperability framework that summaries the empirical findings and proposes recommendations for guiding the integration in the radiology context

    Starlink:Runtime interoperability between heterogeneous middleware protocols

    Get PDF
    Interoperability remains a challenging and growing problem within distributed systems. A range of heterogeneous network and middleware protocols which cannot interact with one another are now widely used; for example, the set of remote method invocation protocols, and the set of service discovery protocols. In environments where systems and services are composed dynamically, e.g. pervasive computing and systems-of-systems, the protocols used by two systems wishing to interact is unknown until runtime and hence interoperability cannot be guaranteed. In such situations, dynamic solutions are required to identify the differences between heterogeneous protocols and generate middleware connectors (or bridges) that will allow the systems to interoperate. In this paper, we present the Starlink middleware, a general framework into which runtime generated interoperability logic (in the form of higher level models) can be deployed to'connect'two heterogeneous protocols. For this, it provides: i) an abstract representation of network messages with a corresponding generic parser and composer, ii) an engine to execute coloured automata that represent the required interoperability behaviour between protocols, and iii) translation logic to describe the exchange of message content from one protocol to another. We show through case-study based evaluation that Starlink can bridge heterogeneous protocol types. Starlink is also compared against base-line protocol benchmarks to show that acceptable performance can still be achieved in spite of the high-level nature of the solution

    A peer-to-peer service architecture for the Smart Grid

    Get PDF
    Short paperThe Smart Grid vision needs to address hard challenges such as interoperability, reliability and scalability before it can become fulfilled. The need to provide full interoperability between current and future energy and non-energy systems and its disparate technologies along with the problem of seamless discovery, configuration, and communication of a large variety of networked devices ranging from the resource constrained sensing devices to the large machines inside a data center requires an agnostic Service Oriented Architecture. Moreover, the sheer scale of the Smart Grid and the criticality of the communication among its subsystems for proper management, demands a scalable and reliable communication framework able to work in an heterogeneous and dynamic environment. In this position paper, we propose a generic framework, based on Web Services for interoperability, and epidemic or gossip based communication protocols for reliability and scalability, that can serve a general management substrate where several Smart Grid problems can be solved. We illustrate the flexibility of the proposed framework by showing how it can be used in two specific scenarios.Important challenges in interoperability, reliability, and scalability need to be addressed before the Smart Grid vision can be fulfilled. The sheer scale of the electric grid and the criticality of the communication among its subsystems for proper management, demands a scalable and reliable communication framework able to work in an heterogeneous and dynamic environment. Moreover, the need to provide full interoperability between diverse current and future energy and non-energy systems, along with seamless discovery and configuration of a large variety of networked devices, ranging from the resource constrained sensing devices to servers in data centers, requires an implementation-agnostic Service Oriented Architecture. In this position paper we propose that this challenge can be addressed with a generic framework that reconciles the reliability and scalability of Peer-to-Peer systems, with the industrial standard interoperability of Web Services. We illustrate the flexibility of the proposed framework by showing how it can be used in two specific scenarios

    A rule-based framework for heterogeneous subsystems management in smart home environment

    Get PDF
    Recent advancements in computing and communication technologies have increased the growth of heterogeneous subsystems in smart home environment. However, many of these heterogeneous systems are standalone and do not adapt towards joint execution of tasks. Hence, it is rather difficult to perform interoperation especially to realize desired services preferred by home dwellers. In this paper, we propose a new rule-based framework for heterogeneous systems management as well as coordinating them by means of federated manner in smart home environment. The proposed framework is based on event-condition-action (ECA) rule mechanism with SOAP technology that provides interoperability among those systems. We have implemented the framework with several subsystems to demonstrate their effectiveness for interoperation using ECA rule mechanism. The performance of the framework was tested in LAN environment and proves to be reliable in smart home setting

    Interoperability Framework for Smart Home Systems.

    Get PDF
    Recent advancements in smart home systems have increased the utilization of consumer devices and appliances in home environment. However, many of these devices and appliances exhibit certain degree of heterogeneity and do not adapt towards joint execution of operation. Hence, it is rather difficult to perform interoperation especially to realize desired services preferred by home users. In this paper, we propose a new intelligent interoperability framework for smart home systems execution as well as coordinating them in a federated manner. The framework core is based on Simple Object Access Protocol (SOAP) technology that provides platform independent interoperation among heterogeneous systems. We have implemented the interoperability framework with several home devices to demonstrate their effectiveness for interoperation. The performance of the framework was tested in Local Area Network (LAN) environment and proves to be reliable in smart home settin

    ECA-based interoperability framework for intelligent building

    Get PDF
    The field of intelligent building includes a variety of systems with high level of heterogeneity. Recent advancements in sensor technologies and industrial electronics have increased the growth of heterogeneous systems in building environment. Many of these heterogeneous systems are disparate and not intended to perform mutual interoperation. Hence, it is rather difficult to execute interoperation especially in achieving desired services preferred by building owners and occupants. Complexity of interoperation is one the main reason for ambiguity in interoperability among heterogeneous systems in intelligent building. In intelligent building, an unrestricted joint execution of tasks between heterogeneous systems is essential to offer services that meet the building occupants’ requirements. In this paper, we present an Event-Condition-Action (ECA) based interoperability framework for intelligent building management by providing decision support ability among heterogeneous systems. The framework is interwoven with Web Services to provide unified integration among heterogeneous systems. The framework has been implemented with several systems to demonstrate their efficiency for joint interoperation. The framework was tested in Ethernet environment and proved to be reliable in intelligent building setting

    The POLIPO Security Framework

    Get PDF
    Systems of systems are dynamic coalitions of distributed, autonomous and heterogeneous systems that collaborate to achieve a common goal. While offering several advantages in terms of scalability and flexibility, the systems of systems paradigm has a significant impact on systems interoperability and on the security requirements of the collaborating systems. In this chapter we introduce POLIPO, a security framework that protects the information exchanged among the systems in a system of systems, while preserving systems’ autonomy and interoperability. Information is protected from unauthorized access and improper modification by combining context-aware access control with trust management. Autonomy and interoperability are enabled by the use of ontology-based services. More precisely, each authority may refer to different ontologies to define the semantics of the terms used in the security policy of the system it governs and to describe domain knowledge and context information. A semantic alignment technique is then employed to map concepts from different ontologies and align the systems’ vocabularies. We demonstrate the applicability of our solution with a prototype implementation of the framework for a scenario in the maritime safety and security domain

    Knowledge Integration to Overcome Ontological Heterogeneity: Challenges from Financial Information Systems

    Get PDF
    The shift towards global networking brings with it many opportunities and challenges. In this paper, we discuss key technologies in achieving global semantic interoperability among heterogeneous information systems, including both traditional and web data sources. In particular, we focus on the importance of this capability and technologies we have designed to overcome ontological heterogeneity, a common type of disparity in financial information systems. Our approach to representing and reasoning with ontological heterogeneities in data sources is an extension of the Context Interchange (COIN) framework, a mediator-based approach for achieving semantic interoperability among heterogeneous sources and receivers. We also analyze the issue of ontological heterogeneity in the context of source-selection, and offer a declarative solution that combines symbolic solvers and mixed integer programming techniques in a constraint logic-programming framework. Finally, we discuss how these techniques can be coupled with emerging Semantic Web related technologies and standards such as Web-Services, DAML+OIL, and RuleML, to offer scalable solutions for global semantic interoperability. We believe that the synergy of database integration and Semantic Web research can make significant contributions to the financial knowledge integration problem, which has implications in financial services, and many other e-business tasks.Singapore-MIT Alliance (SMA
    corecore